Abstract
The comparison of genomes with the same gene content relies on our ability to compare permutations, either by measuring how much they differ, or by measuring how much they are alike. With the notable exception of the breakpoint distance, which is based on the concept of conserved adjacencies, measures of distance do not generalize easily to sets of more than two permutations. In this paper, we present a basic unifying notion, conserved intervals, as a powerful generalization of adjacencies, and as a key feature of genome rearrangement theories. We also show that sets of conserved intervals have elegant nesting and chaining properties that allow the development of compact graphic representations, and linear time algorithms to manipulate them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Y. Ajana, J.-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk. Exploring the set of all minimal sequences of reversals — an application to test the replication-directed reversal hypothesis. In Proc. WABI 2002, volume 2452 of LNCS, pages 300–315. Springer Verlag, 2002.
D. A. Bader, B. M. E. Moret, and M. Yan. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comp. Biol., 8(5):483–492, 2001.
V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM J. Disc. Math., 11(2):224–240, 1998.
A. Bergeron, S. Heber, and J. Stoye. Common intervals and sorting by reversals: A marriage of necessity. Bioinformatics, 18(Suppl. 2):S54–S63, 2002. (Proc. ECCB 2002).
A. Bergeron and J. Stoye. On the similarity of sets of permutations and its application to genome comparison. Report 2003-01, Technische Fakultät der Universität Bielefeld, 2003. (Available at www.techfak.uni-bielefeld.de/stoye/rpublications/report2003-01.pdf).
M. Blanchette, T. Kunisawa, and D. Sankoff. Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol., 49(2):193–203, 1999.
J. L. Boore. Mitochondrial gene arrangement source guide. www.jgi.doe.gov/programs/comparative/Mito_top_level.html.
K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379, 1976.
G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res., 12(1):26–36, 2002.
D. A. Christie. Genome Rearrangement Problems. PhD thesis, The University of Glasgow, 1998.
S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proc. FOCS 1995, pages 581–592. IEEE Press, 1995.
S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM, 46(1):1–27, 1999.
S. Heber and J. Stoye. Finding all common intervals of k permutations. In Proc. CPM 2001, volume 2089 of LNCS, pages 207–218. Springer Verlag, 2001.
H. Kaplan, R. Shamir, and R. E. Tarjan. A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Computing, 29(3):880–892, 1999.
J. D. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome inversion distance. In Proc. CPM 1994, volume 807 of LNCS, pages 307–325. Springer Verlag, 1994.
B. Larget, J. Kadane, and D. Simon. A Markov chain Monte Carlo approach to reconstructing ancestral genome rearrangements. Technical report, Carnegie Mellon University, Pittsburgh, 2002.
B. M. E. Moret, A. C. Siepel, J. Tang, and T. Liu. Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In Proc. WABI 2002, volume 2452 of LNCS, pages 521–536. Springer Verlag, 2002.
M. Ozery-Flato and R. Shamir. Two notes on genome rearrangements. J. Bioinf. Comput. Biol., to appear.
D. Sankoff. Short inversions and conserved gene clusters. Bioinformatics, 18(10):1305–1308, 2002.
A. Siepel. An algorithm to find all sorting reversals. In Proc. RECOMB 2002, pages 281–290. ACM Press, 2002.
G. Tesler. Efficient algorithms for multichromosomal genome rearrangement. J. Comput. Syst. Sci., 65(3):587–609, 2002.
T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two permutations. Algorithmica, 26(2):290–309, 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bergeron, A., Stoye, J. (2003). On the Similarity of Sets of Permutations and Its Applications to Genome Comparison. In: Warnow, T., Zhu, B. (eds) Computing and Combinatorics. COCOON 2003. Lecture Notes in Computer Science, vol 2697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45071-8_9
Download citation
DOI: https://doi.org/10.1007/3-540-45071-8_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40534-4
Online ISBN: 978-3-540-45071-9
eBook Packages: Springer Book Archive