Skip to main content

On the Similarity of Sets of Permutations and Its Applications to Genome Comparison

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2697))

Included in the following conference series:

Abstract

The comparison of genomes with the same gene content relies on our ability to compare permutations, either by measuring how much they differ, or by measuring how much they are alike. With the notable exception of the breakpoint distance, which is based on the concept of conserved adjacencies, measures of distance do not generalize easily to sets of more than two permutations. In this paper, we present a basic unifying notion, conserved intervals, as a powerful generalization of adjacencies, and as a key feature of genome rearrangement theories. We also show that sets of conserved intervals have elegant nesting and chaining properties that allow the development of compact graphic representations, and linear time algorithms to manipulate them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. Ajana, J.-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk. Exploring the set of all minimal sequences of reversals — an application to test the replication-directed reversal hypothesis. In Proc. WABI 2002, volume 2452 of LNCS, pages 300–315. Springer Verlag, 2002.

    Google Scholar 

  2. D. A. Bader, B. M. E. Moret, and M. Yan. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comp. Biol., 8(5):483–492, 2001.

    Article  Google Scholar 

  3. V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM J. Disc. Math., 11(2):224–240, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Bergeron, S. Heber, and J. Stoye. Common intervals and sorting by reversals: A marriage of necessity. Bioinformatics, 18(Suppl. 2):S54–S63, 2002. (Proc. ECCB 2002).

    Google Scholar 

  5. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its application to genome comparison. Report 2003-01, Technische Fakultät der Universität Bielefeld, 2003. (Available at www.techfak.uni-bielefeld.de/stoye/rpublications/report2003-01.pdf).

    Google Scholar 

  6. M. Blanchette, T. Kunisawa, and D. Sankoff. Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol., 49(2):193–203, 1999.

    Article  Google Scholar 

  7. J. L. Boore. Mitochondrial gene arrangement source guide. www.jgi.doe.gov/programs/comparative/Mito_top_level.html.

    Google Scholar 

  8. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379, 1976.

    MATH  MathSciNet  Google Scholar 

  9. G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res., 12(1):26–36, 2002.

    Google Scholar 

  10. D. A. Christie. Genome Rearrangement Problems. PhD thesis, The University of Glasgow, 1998.

    Google Scholar 

  11. S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proc. FOCS 1995, pages 581–592. IEEE Press, 1995.

    Google Scholar 

  12. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM, 46(1):1–27, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Heber and J. Stoye. Finding all common intervals of k permutations. In Proc. CPM 2001, volume 2089 of LNCS, pages 207–218. Springer Verlag, 2001.

    Google Scholar 

  14. H. Kaplan, R. Shamir, and R. E. Tarjan. A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Computing, 29(3):880–892, 1999.

    Article  MathSciNet  Google Scholar 

  15. J. D. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome inversion distance. In Proc. CPM 1994, volume 807 of LNCS, pages 307–325. Springer Verlag, 1994.

    Google Scholar 

  16. B. Larget, J. Kadane, and D. Simon. A Markov chain Monte Carlo approach to reconstructing ancestral genome rearrangements. Technical report, Carnegie Mellon University, Pittsburgh, 2002.

    Google Scholar 

  17. B. M. E. Moret, A. C. Siepel, J. Tang, and T. Liu. Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In Proc. WABI 2002, volume 2452 of LNCS, pages 521–536. Springer Verlag, 2002.

    Google Scholar 

  18. M. Ozery-Flato and R. Shamir. Two notes on genome rearrangements. J. Bioinf. Comput. Biol., to appear.

    Google Scholar 

  19. D. Sankoff. Short inversions and conserved gene clusters. Bioinformatics, 18(10):1305–1308, 2002.

    Article  Google Scholar 

  20. A. Siepel. An algorithm to find all sorting reversals. In Proc. RECOMB 2002, pages 281–290. ACM Press, 2002.

    Google Scholar 

  21. G. Tesler. Efficient algorithms for multichromosomal genome rearrangement. J. Comput. Syst. Sci., 65(3):587–609, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two permutations. Algorithmica, 26(2):290–309, 2000.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergeron, A., Stoye, J. (2003). On the Similarity of Sets of Permutations and Its Applications to Genome Comparison. In: Warnow, T., Zhu, B. (eds) Computing and Combinatorics. COCOON 2003. Lecture Notes in Computer Science, vol 2697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45071-8_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45071-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40534-4

  • Online ISBN: 978-3-540-45071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy