Abstract
The purpose of this paper is to examine the usability of Bonferroni-type combinatorial inequalities to estimation of support of itemsets as well as general Boolean expressions. Families of inequalities for various types of Boolean expressions are presented and evaluated experimentally.
Chapter PDF
Similar content being viewed by others
References
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast discovery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI Press, Menlo Park, 1996.
L. Buzzigoli and A. Giusti. An algorithm to calculate the lower and upper bounds of the elements of an array given its marginals. In Statistical Data Protection (SDP’98), Eurostat, pages 131–147, Luxembourg, 1999.
C. L. Blake and C. J. Merz. UCI Repository of machine learning databases. University of California, Irvine, Dept. of Information and Computer Sciences, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
A. Dobra. Computing sharp integer bounds for entries in contingency tables given a set of fixed marginals. Technical report, Department of Statistics, Carnegie Mellon University, http://www.stat.cmu.edu/~adobra/bonf-two.pdf, 2001.
J. Galambos and I. Simonelli. Bonferroni-type Inequalities with Applications. Springer, 1996.
S. Jaroszewicz, D. Simovici, and I. Rosenberg. An inclusion-exclusion result for boolean polynomials and its applications in data mining. In Proceedings of the Discrete Mathematics in Data Mining Workshop, SIAM Datamining Conference, Washington, D.C., 2002.
J. Kahn, N. Linial, and A. Samorodnitsky. Inclusion-exclusion: Exact and approximate. Combinatorica, 16:465–477, 1996.
H. Mannila. Combining discrete algorithms and probabilistic approaches in data mining. In L. DeRaedt and A. Siebes, editors, Principles of Data Mining and Knowledge Discovery, volume 2168 of Lecture Notes in Artificial Intelligence, page 493. Springer-Verlag, Berlin, 2001.
H. Mannila. Global and local methods in data mining: basic techniques and open problems. In ICALP 2002, 29th International Colloquium on Automata, Languages, and Programming, Malaga, Spain, June 2002. Springer-Verlag.
H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed representations. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), pages 189–194, Portland, Oregon, 1996.
D. Pavlov, H. Mannila, and P. Smyth. Probabilistic models for query approximation with large sparse binary data sets. In Proc. of Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI-00), Stanford, 2000.
D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: Probabilistic models for query approximation on binary transaction data. ICS TR-01-09, University of California, Irvine, 2001.
A. Rényi. Quelques remarques ser les probabilites des evenements dependants. Journal de Mathematique, 37:393–398, 1958.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jaroszewicz, S., Simovici, D.A. (2002). Support Approximations Using Bonferroni-Type Inequalities. In: Elomaa, T., Mannila, H., Toivonen, H. (eds) Principles of Data Mining and Knowledge Discovery. PKDD 2002. Lecture Notes in Computer Science, vol 2431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45681-3_18
Download citation
DOI: https://doi.org/10.1007/3-540-45681-3_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44037-6
Online ISBN: 978-3-540-45681-0
eBook Packages: Springer Book Archive