Abstract
This paper presents a parallel algorithm to solve linear equation systems. This method, known as Neville elimination, is appropriate especially for the case of totally positive matrices (all its minors are non-negative). We discuss one common way to partition coefficient matrix among processors. In our mapping, called columwise block-cyclic-striped mapping, the matrix is divided into blocks of complete columns and these blocks are distributed among the processors in a cyclic way. The theoretic asymptotic estimation assures the speed-up to be k (being k the processor number); so the efficiency can take the value 1. Furthermore, in order to study the performance of the algorithm over a real machine (IBM SP2), some constants have been estimated. If such constants take these experimental values, then theoretic results are confirmed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alonso, P., Gasca, M., Peña, J.M.: Backward error analysis of Neville elimination, Applied Numerical Mathematics 23 (1997) 193–204
Alonso, P., Gasca, M., Peña, J.M.: Estudio del error progresivo en la eliminación de Neville, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid 92-1 (1998) 1–8
Alonso, P., Cortina, R., Ranilla, J.: Block-Striped Partitioning and Neville Elimination, EURO-PAR’99. Parallel Processing, Lecture Notes in Computer Science 1685 (1999) 1073–1077
Alonso, P., Cortina, R., Hernández, V., Ranilla, J.: A Study the performance of Neville elimination using two kinds of partitioning techniques. Linear Algebra and its Applications 332–334 (2001) 111–117
Gallivan, K. A., Plemmons, R. J., Sameh, A. H.: Paralell algorithms for dense linear algebra computations, SIAM Rev. 32 (1990) 54–135
Gasca, M., Michelli, C. A.: Total positivity and its Applications, Kluwer Academic Publishers, Boston (1996)
Gasca, M., Peña, J.M.: Total positivity and Neville elimination, Linear Algebra Appl. 165 (1992) 25–44
Hockney, R., Berry, M.: Public International Benchmarks for Parallel Computers. PARKBENCH Committee: Report (1996) (http://www.netlib.org//parkbench)
Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing. Design and Analysis of Algorithms, The Benjamin/Cummings, Menlo Park, CA (1994)
Petitet, A.P., Dongarra, J.J.: Algorithmic Redistribution Methods for Block Cyclic Decompositions, submmited to IEEE Transactions on Parallel and Distributed Computing
Dongarra, J.J.: Performance of Various Computers Using Standard Linear Equations Software, (Linpack Benchmark Report), University of Tennessee Computer Science Technical Report, CS-89-85 (2001)
Trefethen, L. N., Schreiber, R. S.: Average-case stability of Gaussian Elimination SIAM J. Matrix Anal. Appl. 11 (1990) 335–360
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alonso, P., Cortina, R., Díaz, I., Hernández, V., Ranilla, J. (2002). A Columnwise Block Striping in Neville Elimination. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2001. Lecture Notes in Computer Science, vol 2328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48086-2_42
Download citation
DOI: https://doi.org/10.1007/3-540-48086-2_42
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43792-5
Online ISBN: 978-3-540-48086-0
eBook Packages: Springer Book Archive