Abstract
We consider approximate in the limit of Gödel numbers for total recursive functions. The set of possible errors is allowed to be infinite but “effectively small”. The latter notion is precise in several ways, as “immune”, “hyperimmune”, “hyperhyperimmune”, “cohesive”, etc. All the identification types considered turn out to the different.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arslanov M.M.Two theorems on recursively enumerable sets. — Algebra i Logika, 1968, v.7, No. 3, p.4–8 (Russian).
Barzdin J.M. Two theorem on the limiting synthesis of functions. Latvii gosudarst. Univ. Ucenye Zapiski, 1974, v.210, p.82–88.
Case J., and Smith C. Anomaly hierarchies of machanized inductive inference. — Proc. 10th STOc, ACM, 1978, p.314–319.
Case J., and Smith C. Comparison of identification criteria for machine inductive inference. — Theoretical Computer Science, 1983, v.25, p.193–220.
Freivald R. On the limit synthesis of numbers of general recursive functions in various computable numerations. — Soviet Math. Doklady, 1974, v.15, No.6, p.1681–1683.
Freivalda R., and Kinber E.B. Criteria of distinction among limit identification types. — “Sintez, testirovanie i otladka programm”. Proc. USSR Nacional Symposium, Riga, 1981, p.128–129 (Russian).
Pitt L. A characterization of probabilistic inference. — of the 25th Annual Symposium on Foundations of Comp.Sc., 1984, p.485–497.
Podnieks K. Computing various concepts of function prediction.Latvii gosudarst. Univ. Ucenye Zapiski, 1974, v.210, p.68–81.
Rogers H.Jr. Theory of recursive Functions and Effective Computability. MIT Press, 1987.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Freivalds, R., Vīksna, J. (1989). Inductive inference up to immune sets. In: Jantke, K.P. (eds) Analogical and Inductive Inference. AII 1989. Lecture Notes in Computer Science, vol 397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51734-0_56
Download citation
DOI: https://doi.org/10.1007/3-540-51734-0_56
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51734-4
Online ISBN: 978-3-540-46798-4
eBook Packages: Springer Book Archive