Abstract
In this paper, we present two methods in order to extract relevant informations from a knowledge represented with a set of trivalued propositional rules. The aim of the introduction of the third value is on the one hand to allow to deal with uncertain informations, and on the other hand to introduce a non-monotonic implication connective. We show how to extend the notion of production fields to this formalism and how the concept of unification can be applied.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jean-Marc BoÏ, Eric Innocente, Antoine Rauzy et Pierre Siegel — Aspect de la démonstration automatique en France. Actes de Journées Nationales du PRC-IA 90.
ChaÎnage avant et calculs de modèles en logique bivaluée et trivaluée 7 Ièmes Journées Internationales sur le Systèmes Experts Avignon 87
An Assumption-Based TMS. Artificial Intelligence 28.
Introduction to metamathematics North-Holland 67
Elements of Mathematical Logic. Pergamon Press 63.
Non-monotonic formalisms and logic programing Proc. 6th ICLP
Représentation et utilisation de la connaissance en calcul propositionnel, Thèse d'état, Groupe Intelligence Artificielle, Université d'Aix-Marseille II, Juillet 1987
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rauzy, A. (1991). Knowledge extraction in trivalued propositional logic. In: Kruse, R., Siegel, P. (eds) Symbolic and Quantitative Approaches to Uncertainty. ECSQARU 1991. Lecture Notes in Computer Science, vol 548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54659-6_103
Download citation
DOI: https://doi.org/10.1007/3-540-54659-6_103
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54659-7
Online ISBN: 978-3-540-46426-6
eBook Packages: Springer Book Archive