Skip to main content

Jamming of Granular Matter

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

A jammed material is defined as one that is structurally disordered but, unlike a fluid, possesses an yield stress. In the field of traditional condensed matter physics, such a material would be called an amorphous solid. The broader use of “jammed” extends this concept to non‐traditional materials such as granular systems, foams and colloids. Jamming is, similarly, the extension of the concept of freezing to the transition from a fluid state to a jammed state. Understanding jamming in granular systems is important from technological, environmental, and basic science perspectives. Jamming of grains in silos causes catastrophic failures. Avalanches are examples of unjamming, which we need to understand prevent and control. The phenomenon of jamming in granular matter poses fundamental challenges in basic science because there is no known framework leading from the microscopic, grain level interactions to the macroscopic properties that...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Granular matter:

Material such as sand or sugar, which is composed of independent, macroscopic particles characterized by short range interactions that do not conserve energy. Energy is lost to excitations of internal degrees of freedom, and is then unavailable for macroscopic flow.

Supercooled liquid:

A liquid cooled below its freezing point by avoiding crystallization.

Shear deformation:

Deformation of a material in which internal clusters or layers slide past each other.

Couette flow:

Flow between two surfaces one of which is moving with respect to the other.

Bibliography

  1. Jaeger H, Nagel S, Behringer R (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273

    ADS  Google Scholar 

  2. Jaeger H, Nagel S, Behringer R (1996) The physics of granular materials. Phys Today 49:32–38

    Google Scholar 

  3. Kadanoff LP (1999) Built upon sand: Theoretical ideas inspired by granular flows. Rev Mod Phys 71:435

    ADS  Google Scholar 

  4. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three‐dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627

    ADS  Google Scholar 

  5. Donati C et al (1998) Stringlike cooperative motion in a supercooled liquid. Phys Rev Lett 80:2338

    ADS  Google Scholar 

  6. Donati C, Glotzer S, Poole P, Kob W, Plimpton S (1999) Spatial correlations of mobility and immobility in a glass‐forming lennard‐jones liquid. Phys Rev E 60:3107

    ADS  Google Scholar 

  7. Berthier L et al (2005) Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310:1797–1800

    ADS  Google Scholar 

  8. Lacevic N, Starr F, Schroder T, Glotzer S (2003) Growing correlation length on cooling below the onset of caging in a simulated glass‐forming liquid. J Chem Phys 119:7372

    ADS  Google Scholar 

  9. Keys AS, Abate AR, Glotzer SC, Durian DJ (2007) Direct observation of growing dynamical length scales and prediction of the jamming transition from dynamical heterogeneity in a granular system. Nat Phys 3:260

    Google Scholar 

  10. Dauchot O, Marty G, Biroli G (2005) Dynamical heterogeneity close to the jamming transition in a sheared granular material Phys Rev Lett 95:265701

    Google Scholar 

  11. Pouliquen O (2004) Velocity correlations in dense granular flows. Phys Rev Lett 93:248001

    ADS  Google Scholar 

  12. Miller B, O'Hern C, Behringer RP (1996) Stress fluctuations for continously sheared granular materials. Phys Rev Lett 77:3110

    ADS  Google Scholar 

  13. Howell D, Behringer RP (1999) Fluctuations in a 2d granular Couette experiment: A critical transition. Phys Rev Lett 82:5241

    ADS  Google Scholar 

  14. Veje C, Howell D, Behringer RP (1999) Kinematics of a two‐dimensional granular couette experiment at the transition to shearing. Phys Rev E 59:739–745

    ADS  Google Scholar 

  15. Geng J, Behringer RP, Reydellet G, Clément E (2003) Green's function measurements of force transmission in 2d granular materials. Physica D 182:274

    Google Scholar 

  16. Daniels KE, Behringer RP (2005) Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow. Phys Rev Lett 94:168001

    ADS  Google Scholar 

  17. Daniels KE, Behringer RP (2005) Characterization of a freezing/melting transition in a vibrated and sheared granular medium. In: Garcia-Rojo R, Herrmann HJ, McNamara S (eds) Powders, Grains 05 357–360 Balkema, Rotterdam

    Google Scholar 

  18. Daniels KE, Behringer RP (2006) Characterization of a freezing/melting transition in a vibrated and sheared granular medium. J Stat Mech 7:P07018

    Google Scholar 

  19. Longhi E, Easwar N, Menon N (2002) Large force fluctuations in a flowing granular medium. Phys Rev Lett 89:0455011–0455014

    Google Scholar 

  20. Ferguson A, Chakraborty B (2007) Spatially heterogenous dynamics in dense, driven granular flows. Europhys Lett 78

    Google Scholar 

  21. Silbert LE, Ertas D, Grest GS, Halsey TC, Levine D (2002) Analogies between granular jamming and the liquid‐glass transition. Phys Rev E 65:051307

    MathSciNet  ADS  Google Scholar 

  22. Silbert L (2005) Temporally heterogeneous dynamics in granular flows. cond-mat/0501617

    Google Scholar 

  23. Silbert LE, Grest GS, Brewster R, Levine AJ (2007) Rheology and contact lifetimes in dense granular flows. Phys Rev Lett 99:068002

    ADS  Google Scholar 

  24. Chandler D (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New York

    Google Scholar 

  25. Dolnik M, Zhabotinsky A, Epstein I (1996) Modulated standing waves in a short reaction‐diffusion system. J Physical Chem 100:6604–6607

    Google Scholar 

  26. Dhar D (2006) Theoretical studies of self‐organized criticality. Phys A-Stat Mech Appl 369:29–70

    MathSciNet  Google Scholar 

  27. Schmittmann B, Zia RKP (1995) Statistical Mechanics of Driven Diffusive Systems. In: Domb C, Lebowitz J (eds) Phase Transitions and Critical Phenomena, vol 17. Academic Press, New York

    Google Scholar 

  28. Edwards SF, Blumenfeld R (2007) The thermodynamics of granular materials. In: Mehta A (ed) Physics of Granular Materials, Cambridge University Press, Cambridge

    Google Scholar 

  29. Edwards SF, Grinev DV (1999) Statistical mechanics of stress transmission in disordered granular arrays. Phys Rev Lett 82:5397

    ADS  Google Scholar 

  30. Edwards SF, Oakeshott RBS (1989) Theory of powders. Phys A 157:1080

    MathSciNet  Google Scholar 

  31. Edwards SF, Grinev DV (2001) Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales. Taylor, New York

    Google Scholar 

  32. Donev A, Torquato S, Stillinger F, Connelly R (2004) Jamming in hard sphere and disk packings. J Appl Phys 95:989–999

    ADS  Google Scholar 

  33. Barrat A, Kurchan J, Loreto V, Sellitto M (2001) Edwards' measures: A thermodynamic construction for dense granular media and glasses. Phys Rev E 6305:0513011–05130114

    Google Scholar 

  34. Barrat A, Kurchan J, Loreto V, Sellitto M (2000) Edwards' measures for powders and glasses. Phys Rev Lett 85:5034

    ADS  Google Scholar 

  35. Coniglio A, Fierro A, Nicodemi M (2002) Probability distribution of inherent states in models of granular media and glasses. Eur Phys J E 9:219

    Google Scholar 

  36. Coniglio A, Fierro A, Nicodemi M (2001) Applications of the statistical mechanics of inherent states to granular media. Phys a-Stat Mech Appl 302:193

    MATH  Google Scholar 

  37. Kurchan J (2001) Recent theories of glasses as out of equilibrium systems. Comptes Rendus Acad Sci Ser Iv Phys Astrophys 2:239–247

    Google Scholar 

  38. Makse H, Kurchan J (2002) Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415:614–617

    ADS  Google Scholar 

  39. Blumenfeld R, Edwards SF (2003) Granular entropy: Explicit calculations for planar assemblies. Phys Rev Lett 90:1143031–1143034

    Google Scholar 

  40. Snoeijer JH, Vlugt TJH, van Hecke M, van Saarloos W (2003) Force network ensemble: a new approach to static granular matter. Phys Rev Lett 91:072303

    Google Scholar 

  41. Tkachenko A, Witten T (1999) Stress propagation through frictionless granular material Phys Rev E 60:687

    Google Scholar 

  42. Snoeijer J, Vlugt T, van Hecke M, van Saarloos W (2004) Force network ensemble: A new approach to static granular matter. Phys Rev Lett 92:0543021–0543024

    Google Scholar 

  43. Snoeijer J, Ellenbroek W, Vlugt T, van Hecke M (2006) Sheared force networks: Anisotropies, yielding, and geometry. Phys Rev Lett 96:09800191–0980014

    Google Scholar 

  44. van Eerd ART, Ellenbroek WG, van Hecke M, Snoeijer JH, Vlugt TJH (2007) Tail of the contact force distribution in static granular materials. Phys Rev E 75:0603021–0603024

    Google Scholar 

  45. Snoeijer J, van Hecke M, Somfai E, van Saarloos W (2003) Force and weight distributions in granular media: Effects of contact geometry. Phys Rev E 67:0303021–0303024

    Google Scholar 

  46. Snoeijer J, van Hecke M, Somfai E, van Saarloos W (2004) Packing geometry and statistics of force networks in granular media. Phys Rev E 70:0113011–01130115

    Google Scholar 

  47. Snoeijer J, Vlugt T, Ellenbroek W, van Hecke M, van Leeuwen J (2004) Ensemble theory for force networks in hyperstatic granular matter. Phys Rev E 70:0613061–06130616

    Google Scholar 

  48. Tighe B, Socolar J, Schaeffer D, Mitchener W, Huber M (2005) Force distributions in a triangular lattice of rigid bars. Phys Rev E 72:0313061–03130610

    Google Scholar 

  49. O'Hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys Rev E 68:011306

    ADS  Google Scholar 

  50. Bertin E, Dauchot O, Droz M (2006) Definition and relevance of nonequilibrium intensive thermodynamic parameters. Phys Rev Lett 96:1206011–1206014

    Google Scholar 

  51. Bertin E, Dauchot O, Droz M (2005) Nonequilibrium temperatures in steady‐state systems with conserved energy. Phys Rev E 71:0461401–04614014

    MathSciNet  Google Scholar 

  52. Bertin E, Dauchot O, Droz M (2004) Temperature in nonequilibrium systems with conserved energy. Phys Rev Lett 93:2306011–2306014

    Google Scholar 

  53. Henkes S, O'Hern CS, Chakraborty B (2007) Entropy and temperature of a static granular assembly: An ab initio approach. Phys Rev Lett 99:0380021–0380024

    Google Scholar 

  54. Blumenfeld R (2007) On entropic characterization of granular materials. To appear in: Aste T, Tordesiillas A, Matteo T (eds) Lecture Notes. World Scientific, Singapore

    Google Scholar 

  55. Ball RC, Blumenfeld R (2002) Stress field in granular systems: Loop forces and potential formulation. Phys Rev Lett 88:115505

    ADS  Google Scholar 

  56. Henkes S, Chakraborty B (2005) Jamming as a critical phenomenon: A field theory of zero‐temperature grain packings. Phys Rev Lett 95:1980021–1980024

    Google Scholar 

  57. Henkes S, Chakraborty B (2008) Field theory, soft modes and the nature of jamming the critical point. Phys Rev E (to appear)

    Google Scholar 

  58. Liu AJ, Nagel SR (1998) Jamming is not just cool anymore. Nature 396:21

    ADS  Google Scholar 

  59. Majmudar TS, Sperl M, Luding S, Behringer RP (2007) Jamming transition in granular systems. Phys Rev Lett 98:058001

    ADS  Google Scholar 

  60. Wyart M (2005) On the rigidity of amorphous solids. Ann Phys 30:1–96

    Google Scholar 

  61. Wyart M, Nagel S, Witten T (2005) Geometric origin of excess low‐frequency vibrational modes in weakly connected amorphous solids. Europhys Lett 72:486–492

    ADS  Google Scholar 

  62. Kirkpatrick TR, Thirumalai D, Wolynes PG (1989) Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys Rev A 40:1045

    ADS  Google Scholar 

  63. Xia X, Wolynes PG (2001) Fragilities of liquids predicted from the random first order transition theory of glasses. Phys Rev Lett 86:5526

    ADS  Google Scholar 

  64. Bouchaud J, Biroli G (2004) On the adam‐gibbs‐kirkpatrick‐thirumalai‐wolynes scenario for the viscosity increase in glasses. J Chem Phys 121:7347–7354

    ADS  Google Scholar 

  65. Donev A, Connelly R, Stillinger FH, Torquato S (2007) Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids. Phys Rev E 75:0513041–05130432

    MathSciNet  Google Scholar 

  66. Reynolds O (1885) On the dilatancy of media composed of rigid particles in contact. Philos Mag Ser 5 50–20:469

    Google Scholar 

  67. Nedderman RM (1992) Statics and kinematics of granular materials. Cambridge University Press, Cambridge

    Google Scholar 

  68. Majmudar TS, Behringer RP (2005) Contact force measurements and stress‐induced anisotropy in granular materials. Nature 435:1079–1082

    ADS  Google Scholar 

  69. Blume M, Emery V, Griffiths RB (1971) Ising model for the lambda transition... Phys Rev A 4:1071

    Google Scholar 

  70. Lois G, Lemaitre A, Carlson JM (2007) Spatial force correlations in granular shear flow. i. numerical evidence. Phys Rev E 76:0213021–02130212

    Google Scholar 

  71. Lois G, Lemaitre A, Carlson JM (2007) Spatial force correlations in granular shear flow. ii. theoretical implications. Phys Rev E 76:0213031–02130314

    Google Scholar 

  72. Ferguson A, Chakraborty B (2006) Stress and large-scale spatial structures in dense, driven granular flows. Phys Rev E 73:0113031–0113037

    Google Scholar 

  73. Ferguson A, Fisher B, Chakraborty B (2004) Impulse distributions in dense granular flows: Signatures of large-scale spatial structures. Europhys Lett 66:277–283

    ADS  Google Scholar 

  74. Hurley M, Harrowell P (1995) Kinetic structure of a two‐dimensional liquid. Phys Rev E 52:1694–1698

    ADS  Google Scholar 

  75. Perera D, Harrowell P (1996) Kinetic structure of a two‐dimensional liquid. Phys Rev E 54:1652

    ADS  Google Scholar 

  76. Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluid 11:542–548

    MathSciNet  ADS  MATH  Google Scholar 

  77. Ertas D, Halsey T (2002) Granular gravitational collapse and chute flow. Europhys Lett 60:931–937

    ADS  Google Scholar 

  78. Kolb E, Cviklinski J, Lanuza J, Clauding P, Clement E (2004) Reorganizationof a dense granular assembly: The unjamming response function. Phys Rev E 69:031306

    ADS  Google Scholar 

  79. Drocco JA, Hastings MB, Reichardt CJO, Reichardt C (2005) Multiscaling at point j: Jamming is a critical phenomenon. Phys Rev Lett 95:088001

    ADS  Google Scholar 

  80. Geng J, Behringer RP (2005) Slow drag in two‐dimensional granular media. Phys Rev E 71:011302

    ADS  Google Scholar 

  81. Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200

    Google Scholar 

  82. Majmudar TS, Behringer RP (2005) Contact forces and stress induced anisotropy. In: Garcia-Rojo R, Herrmann HJ, McNamara S (eds) Powders and Grains. 65 AA Balkema, Leiden

    Google Scholar 

  83. Snoeijer JH, van Hecke M, Somfai E, van Saarloos W (2004) Force and weight distributions in granulr media: Effects of contact geometry. Phys Rev E 67:030302

    Google Scholar 

  84. Snoeijer JH, Vlugt TJH, van Hecke M, van Saarloos W (2004) Force network ensemble: A new approach to static granular matter. Phys Rev Lett 92:054302

    ADS  Google Scholar 

  85. Hartley RR, Behringer RP (2003) Logarithmic rate dependence of force networks in sheared granular materials. Nature 421:928

    ADS  Google Scholar 

  86. Corwin EI, Jaeger HM, Nagel SR (2005) Structural signature of jamming in granular media. Nature 435:1075–1078

    ADS  Google Scholar 

  87. Corwin E, Jaeger H, Nagel S (2005) Structural signature of jamming in granular media. Nature 435:1075–1078

    ADS  Google Scholar 

  88. Daniels KE, Behringer RP (2005) Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow: Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow. Phys Rev Lett 94:168001

    ADS  Google Scholar 

  89. Behringer RP, Chakraborty B, Henkes S, Hartley RR (2008) Why do granular materials stiffen with shear rate? a test of novel stress‐based statistics. Phys Rev Lett (to appear)

    Google Scholar 

  90. Makse H, Johnson D, Schwartz L (2000) Packing of compressible granular materials. Phys Rev Lett 84:4160–4163

    ADS  Google Scholar 

  91. O'Hern C, Langer S, Liu A, Nagel S (2001) Force distributions near jamming and glass transitions. Phys Rev Lett 86:111

    ADS  Google Scholar 

  92. O'Hern C, Langer S, Liu A, Nagel S (2002) Random packings of frictionless particles. Phys Rev Lett 88:075507

    ADS  Google Scholar 

  93. Ellenbroek WG (2007) Response of Granular Media near the Jamming Transition. Ph.D thesis, Leiden University

    Google Scholar 

  94. Wyart M, Silbert LE, Nagel SR, Witten TA (2005) Effects of compression on the vibrational modes of marginally jammed solids. Phys Rev E 72:051306

    ADS  Google Scholar 

  95. Silbert LE, Liu AJ, Nagel SR (2005) Vibrations and diverging length scales near the unjamming transition. Phys Rev Lett 95:098301

    ADS  Google Scholar 

  96. Tighe BP, Socolar JES, Schaeffeer DG, Mitchener WG, Huber ML (2005) Force distributions in a triangular lattice of rigid bars. Phys Rev E 72:031306

    ADS  Google Scholar 

  97. Torquato S, Truskett T, Debenedetti P (2000) Is random close packing of spheres well defined? Phys Rev Lett 84:2064–2067

    ADS  Google Scholar 

  98. Krzakala F, Kurchan J (2007) Landscape analysis of constraint satisfaction problems. Phys Rev E 76:0210021–02100213

    MathSciNet  Google Scholar 

  99. Schwartz J, Liu A, Chayes L (2006) The onset of jamming as the sudden emergence of an infinite k-core cluster. Europhys Lett 73:560–566

    ADS  Google Scholar 

  100. Cates M, Wittmer J, Bouchaud J, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81:1841–1844

    ADS  Google Scholar 

  101. Cates M, Wittmer J, Bouchaud J, Claudin P (1998) Development of stresses in cohesionless poured sand. Philos Trans Royal Soc London Ser A-Math Phys Eng Sci 356:2535–2560

    Google Scholar 

  102. Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1999) Jamming and static stress transmission in granular materials. Chaos 9:511–522

    ADS  MATH  Google Scholar 

  103. Coppersmith S, Liu C, Majumdar S, Narayan O, Witten T (1996) Model for force fluctuations in bead packs. Phys Rev E 53:4673–4685

    ADS  Google Scholar 

  104. To K (2005) Jamming transition in two‐dimensional hoppers and silos. Phys Rev E Stat Nonlin Soft Matter Phys 71:060301

    Google Scholar 

  105. Zuriguel I, Garcimartin A, Maza D, Pugnaloni LA, astor JM (2005) Jamming during the discharge of granular matter from a silo. Phys Rev E Stat Nonlin Soft Matter Phys 71:051303

    ADS  Google Scholar 

  106. Easwar N Private Communication

    Google Scholar 

  107. Monthus C, Bouchaud J-P (1996) Models of traps and glass phenomenology. J Phys A 29:3847

    ADS  MATH  Google Scholar 

  108. Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58:738

    ADS  Google Scholar 

  109. Bouchaud J, Cugliandolo L, Kurchan J, Mezard M (1996) Mode‐coupling approximations, glass theory and disordered systems. Physica A 226:243–273

    ADS  Google Scholar 

  110. Song C, Wang P, Potiguar F, Makse H (2005) Experimental and computational studies of jamming. J Phys-Condens Matter 17:S2755–S2770

    ADS  Google Scholar 

  111. Song C, Wang P, Makse H (2005) Experimental measurement of an effective temperature for jammed granular materials. Proc National Acad Sci USA 102:2299–2304

    ADS  Google Scholar 

  112. Potiguar F, Makse H (2006) Effective temperature and jamming transition in dense, gently sheared granular assemblies. Euro Phys J E 19:171–183

    Google Scholar 

  113. Ono I et al (2002) Effective temperatures of a driven system near jamming. Phys Rev Lett 89:0957031–0957034

    Google Scholar 

  114. O'Hern C, Liu A, Nagel S (2004) Effective temperatures in driven systems: Static versus time‐dependent relations. Phys Rev Lett 93:1657021–1657024

    Google Scholar 

  115. Desmond K, Franklin SV (2006) Jamming of three‐dimensional prolate granular materials. Phys Rev E Stat Nonlin Soft Matter Phys 73:031306

    ADS  Google Scholar 

  116. Man W et al (2005) Experiments on random packings of ellipsoids. Phys Rev Lett 94:198001

    ADS  Google Scholar 

  117. Blouwolff J, Fraden S (2006) The coordination number of granular cylinders. Europhys Lett 76:1095

    ADS  Google Scholar 

Books and Reviews

  1. Blumenfeld R (2004) Stresses in isostatic granular systems and emergence of force chains. Phys Rev Lett 93:108301

    ADS  Google Scholar 

  2. Bouchaud JP (2003) Granular media: Some ideas from statistical physics. In: Barrat JL, Dalibard J, Feigelman M, Kurchan J (eds) Slow relaxations and nonequilibrium dynamics in condensed matter. Springer, Berlin

    Google Scholar 

  3. Bouchaud JP, Claudin P, Levine D, Otto M (2001) Force chain splitting in granular materials: A mechanism for large-scale pseudo‐elastic behaviour. Eur Phys J E 4:451–457

    Google Scholar 

  4. Coniglio A, Fierro A, Herrmann H, Nicodemi M (eds) (2004) Unifying concepts in granular media and glasses, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  5. Mehta A (1994) Granular matter: an interdisciplinary approach. Springer, New York

    Google Scholar 

  6. Halsey TC, Mehta A (2002) Challenges in granular physics. World Scientific, Singapore

    MATH  Google Scholar 

  7. Herrmann HJ, Hovi JP, Luding S (1998) Physics of dry granular media. In: NATOASI series. Series E, Applied sciences, vol 350. Kluwer Academic, Dordrecht

    Google Scholar 

  8. Jiang Y, Liu M (2007) A brief review of “granular elasticity”: why and how far is sand elastic? Eur Phys JE Soft Matter 22:255–260

    Google Scholar 

  9. Krimer DO, Pfitzner M, Brauer K, Jiang Y, Liu M (2006) Granular elasticity: general considerations and the stress dip in sand piles. Phys Rev E Stat Nonlin Soft Matter Phys 74:061310

    Google Scholar 

  10. Otto M, Bouchaud JP, Claudin P, Socolar JES (2003) Anisotropy in granular media: classical elasticity and directed‐force chain network. Phys Rev E Stat Nonlin Soft Matter Phys 67:031302

    ADS  Google Scholar 

  11. Ovarlez G, Fond C, Clement E (2003) Overshoot effect in the janssen granular column: a crucial test for granular mechanics. Phys Rev E Stat Nonlin Soft Matter Phys 67:060302

    Google Scholar 

  12. Torquato S, Donev A, Stillinger F (2003) Breakdown of elasticity theory for jammed hard‐particle packings: conical nonlinear constitutive theory. Int J Solid Struct 40:7143–7153

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Chakraborty, B., Behringer, B. (2009). Jamming of Granular Matter. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_298

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy