Skip to main content

Solitons: Historical and Physical Introduction

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

The interest in nonlinear physics has grown significantly over the last fifty years. Although numerous nonlinear processes had been previouslyidentified the mathematic tools of nonlinear physics had not yet been developed. The available tools were linear, and nonlinearities were avoided or treatedas perturbations of linear theories. The solitary water wave,experimentally discovered in 1834 by John ScottRussell , led to numerousdiscussions. This hump-shape localized wave that propagates along one space‐direction with undeformed shape has spectacular stability properties. JohnScott Russell carried out many experiments to obtain the properties of this wave. The theories which were based on linear approaches concluded that thiskind of wave could not exist. The controversy was resolved by J. Boussinesq [5] and by LordRayleigh [64] who showed that if dissipation is neglected, the increase in local wave velocityassociated with finite amplitude is balanced by the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,869.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Breaking waves:

As waves increase in height through the shoaling process, the crest of the wave tends tospeed up relative to the rest of the wave. Waves break when the speed of the crest exceeds the speed of the advance of the wave asa whole.

Crystal lattice:

A geometric arrangement of the points in space at which the atoms, molecules, orions of a crystal occur.

Deep water:

Water sufficiently deep that surface waves are little affected by the ocean bottom. Waterdeeper than one-half the surface wave length is considered deepwater.

Fluxon :

Quantum of magnetic flux.

Freak waves:

Single waves which result from a local focusing of wave energy. They are ofconsiderable danger to mariners because of their unexpected nature.

Geostrophic adjustment:

The process by which an unbalanced atmospheric flow field is modified togeostrophic equilibrium, generally by a mutual adjustment of the atmospheric wind and pressure fields depending on the initial horizontal scale of thedisturbance.

Geostrophic equilibrium:

A state of motion of an inviscid fluid in which the horizontal Coriolisforce exactly balances the horizontal pressure force at all points of the field.

Hydraulic jump:

A sudden turbulent rise in water level, such as often occurs at the foot ofa spillway when the velocity of rapidly flowing water is instantaneously slowed.

Katabatic wind:

Most widely used in mountain meteorology to denote a downslope flow driven bycooling at the slope surface during periods of light larger‐scale winds.

Lightning:

Lightning is a transient, high‐current electric discharge.

Plasma:

Hot, ionized gas.

Shallow water:

Water depths less than or equal to one half of the wavelength ofa wave.

Solitary wave:

Localized wave that propagates along one space direction only, with undeformedshape.

Soliton :

Large‐amplitude pulse of permanent form whose shape and speed are not altered bycollision with other solitary waves, the exact solution of a nonlinear equation.

Spillway:

A feature in a dam allowing excess water to pass without overtopping thedam.

Thermocline:

A layer in which the temperature decreases significantly (relative to the layers aboveand below) with depth.

Synoptic scale:

Used with respect to weather systems ranging in size from several hundred kilometers toseveral thousand kilometers.

Thunder:

The sound emitted by rapidly expanding gases along the channel of a lightningdischarge.

Thunderstorm:

In general, a local storm, invariably produced by a cumulonimbus cloud andalways accompanied by lightning and thunder, usually with strong gusts of wind, heavy rain, and sometimes with hail.

Tidal bore :

Tidal wave that propagates up a relatively shallow and sloping estuary or river, ina solitary wave form. The leading edge presents an abrupt rise in level, sometimes with continuous breaking and often immediately followed by severallarge undulations. The tidal bore is usually associated with high tidal range and a sharp narrowing and shoaling at the entrance. Also called pororoca(Brazilian) and mascaret (French).

Troposphere:

The portion of the atmosphere from the earth's surface to the tropopause, that is thelowest 10–20 km of the atmosphere.

Tsunami :

Long period ocean wave generated by an earthquake or a volcanicexplosion.

Bibliography

Primary Literature

  1. Ablowitz MJ, Clarkson PA (1991) Solitons, nonlinear evolutions equations and inverse scattering. Cambridge University Press, Cambridge

    Google Scholar 

  2. Airy GB (1845) Tides and waves. Encycl Metropolitana 5:291–396

    Google Scholar 

  3. Bazin H (1865) Recherches expérimentales relatives aux remous et à la propagationdes ondes. In: Darcy H and Bazin H (eds) Recherches hydrauliques,imprimerie impériale, Paris

    Google Scholar 

  4. Benjamin TB, Feir JE (1967) The disintegration of wavetrains on deep water. Part 1 Theory. J Fluid Mech 27:417–430

    ADS  Google Scholar 

  5. Boussinesq J (1871) Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. CRAcad Sci 72:755–759

    Google Scholar 

  6. Boussinesq J (1877) Essai sur la théorie des eaux courantes. MSE 23:1–680

    Google Scholar 

  7. Brandt P, Rubino A, Alpers W, Backhaus JO (1997) Internal waves in the Strait of Messina studied by a numerical model and synthetic apertureradar images from the ERS 1/2 satellites. J Phys Oceanogr 27:648–663

    ADS  Google Scholar 

  8. Bullough RK (1988) The Wave Par Excellence, the solitary progressive great wave ofequilibrium of the fluid: an early history of the solitary wave. In: Lakshmanan M (ed) Solitons: Introduction and applications. Springer Ser Nonlinear Dyn.Springer, New York, pp 150–281

    Google Scholar 

  9. Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, Berlin

    Google Scholar 

  10. Chanson H (2005) Le tsunami du 26 décembre 2004: un phénomène hydrauliqued'ampleur internationale. Premiers constats. Houille Blanche 2:25–32

    Google Scholar 

  11. Cooker MJ, Weidman PD, Bale DS (1997) Reflection of high amplitude wave at a vertical wall. J Fluid Mech 342:141–158

    MathSciNet  ADS  Google Scholar 

  12. Darrigol O (2003) The spirited horse, the engineer, and the mathematician: water waves in nineteenth‐century hydrodynamics. Arch Hist ExactSci 58:21–95

    MathSciNet  Google Scholar 

  13. Dias F, Dutykh D (2007) Dynamics of tsunami waves. Extreme Man-Made and NaturalHazards in Dynamics of Structures. In: Ibrahimbegovic A, Kozar I (eds) Proc NATO Adv Res Workshop on Extreme Man-Made and Natural Hazards in Dynamics ofStructures. Springer, Opatija, Croatia

    Google Scholar 

  14. Donnelly C, Chanson H (2002) Environmental impact of a tidal bore ontropical rivers. In: Proc 5th Int River Management Symp. Brisbane, Australia

    Google Scholar 

  15. Edler J, Hamm P (2002) Self‐trapping of the amide I band in a peptide model crystal. J Chem Phys 117:2415–2424

    ADS  Google Scholar 

  16. Emerson GS (1977) John Scott Russell: a great Victorian engineer and naval architect. John Murray, London

    Google Scholar 

  17. Ezersky AB, Polukhina OE, Brossard J, Marin F, Mutabazi I (2006) Spatiotemporal properties of solitons excited on the surface of shallow waterin a hydrodynamic resonator. Phys Fluids 18:067104

    MathSciNet  ADS  Google Scholar 

  18. Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems. Los Alamosreport, LA-1940. published later In: Segré E (ed)(1965) Collected Papers ofEnrico Fermi. University of Chicago Press

    Google Scholar 

  19. Fochesato C, Grilli S, Dias F (2007) Numerical modelling of extreme rogue waves generated by directional energy focusing. Wave Motion44:395–416

    MathSciNet  Google Scholar 

  20. Ford JJ (1961) Equipartition of energy for nonlinear systems. J Math Phys2:387–393

    ADS  Google Scholar 

  21. Fornberg B, Whitham GB (1978) A numerical and theoretical study of certain nonlinear wave phenomena. Philos Trans R Soc London 289:373–404

    MathSciNet  ADS  Google Scholar 

  22. Frenkel J, Kontorova T (1939) On the theory of plastic deformation and twinning. J Phys 1:137–149

    MathSciNet  Google Scholar 

  23. Gardner CS, Morikawa GK (1960) Similarity in the asymptotic behaviour ofcollision‐free hydromagnetic waves and water waves. Technical Report NYO-9082, Courant Institute of Mathematical Sciences. New York University, NewYork

    Google Scholar 

  24. Gardner CS, Green JM, Kruskal MD, Miura RM (1967) Method for solving the Korteweg-de Vries equation. Phys Rev Lett 19:1095–1097

    ADS  Google Scholar 

  25. Gerkema T, Zimmerman JTF (1994) Generation of nonlinear internal tides and solitary waves. J Phys Oceanogr 25:1081–1094

    ADS  Google Scholar 

  26. Goring DG (1978) Tsunamis – The propagation of long waves ontoa shelf. Ph D thesis. California Inst Techn, Pasadena, California

    Google Scholar 

  27. Greig IS, Morris JL (1976) A hopscotch method for the KdV equation. J Comput Phys 20:64–80

    MathSciNet  ADS  Google Scholar 

  28. Guizien K, Barthélemy E (2002) Accuracy of solitary wave generation by a piston wave maker. J Hydraulic Res 40(3):321–331

    Google Scholar 

  29. Hammack JL, Segur H (1974) The Korteweg-de Vries equation and water waves. Part2. Comparisons with experiments. J Fluid Mech 65:289–314

    MathSciNet  ADS  Google Scholar 

  30. Hao R, Li L, Li ZH, Xue W, Zhou GS (2004) A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödingerequation with variable coefficients. Opt Commun 236:79–86

    ADS  Google Scholar 

  31. Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber: II. Normal dispersion. ApplPhys Lett 23:171–172

    ADS  Google Scholar 

  32. Hashizume Y (1985) Nonlinear pressure waves in a fluid‐filled elastic tube. J Phys Soc Japan 54:3305–3312

    ADS  Google Scholar 

  33. Hashizume Y (1988) Nonlinear pressure wave propagation in arteries. J Phys Soc Japan 57:4160–4168

    MathSciNet  ADS  Google Scholar 

  34. Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Modern Phys 60:781–850

    ADS  Google Scholar 

  35. Helal MA (2001) Chebyshev spectral method for solving KdV equation with hydrodynamical application. Chaos Solit Fractals 12:943–950

    MathSciNet  ADS  Google Scholar 

  36. Helal MA (2002) Review: Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos,Solitons and Fractals 13:1917–1929

    MathSciNet  ADS  Google Scholar 

  37. Helal MA, El-Eissa HN (1996) Shallow water waves and KdV equation (oceanographic application). PUMA 7(3–4):263–282

    MathSciNet  Google Scholar 

  38. Hirota R (1971) Exact solution of the Korteweg–de Vries equation for multiplecollisions of solitons. Phys Rev Lett 27:1192–1194

    ADS  Google Scholar 

  39. Jackson EA (1963) Nonlinear coupled oscillators. I. Perturbation theory: ergodic problems. J Math Phys 4:551–558

    ADS  Google Scholar 

  40. Jaworski M, Zagrodzinski J (1995) Position and position‐like solution of KdV and Sine–Gordon equations. Chaos Solit Fractals 5(12):2229–2233

    MathSciNet  ADS  Google Scholar 

  41. Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomenon. Eur J Mech B/Fluids 22:603–634

    MathSciNet  Google Scholar 

  42. Korteweg DJ, De Vries G (1895) On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationarywaves. Phil Mag 39(5):442–443

    Google Scholar 

  43. Kruglov VI, Peacok AC, Harvey JD (2003) Exact Self–Similar Solutions ofthe Generalized Nonlinear Schrödinger Equation with Distributed Coefficients. Phys Rev Lett 90(11):113902http://prola.aps.org/abstract/PRL/v90/i11/e113902

    ADS  Google Scholar 

  44. Lakshmanan M (1997) Nonlinear physics: integrability, chaos and beyond. J Franklin Inst 334B(5/6):909–969

    MathSciNet  Google Scholar 

  45. Lakshmanan M, Sahadevan R (1993) Painlevé analysis, Lie symmetries and integrability of coupled nonlinear oscillators of polynomial type. PhysRep 224:1–93

    MathSciNet  ADS  Google Scholar 

  46. Lamb H (1879) Treatise on the motion of fluids. Hydrodynamics, 6th edn1952. Cambridge University Press, Cambridge

    Google Scholar 

  47. Lamb H (1971) Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev Mod Phys 43:99–124

    MathSciNet  ADS  Google Scholar 

  48. Liu PL-F, Synolakis CE, Yeh HH (1991) Report on the International Workshop on long-wave run-up. J Fluid Mech 229:675–688

    ADS  Google Scholar 

  49. Lo EYM, Shao S (2002) Simulation of near-shore solitary wave mechanisms by an incompressible SPH method. Appl Ocean Res 24:275–286

    Google Scholar 

  50. Lynch DK (1982) Tidal bores. Sci Am 247:134–143

    Google Scholar 

  51. Malfliet W (1992) Solitary wave solutions of nonlinear wave equations. Am J Phys 60(7):650–654

    MathSciNet  ADS  Google Scholar 

  52. Marin F, Abcha N, Brossard J, Ezersky AB (2005) Laboratory study of sandbedforms induced by solitary waves in shallow water. J Geophys Res 110(F4):F04S17

    Google Scholar 

  53. Martnez Alonso L, Olmedilla Morino E (1995) Algebraic geometry and soliton dynamics. Chaos Solit Fractals 5(12):2213–2227

    Google Scholar 

  54. Maxworthy T (1976) Experiments on collision between solitary waves. J Fluid Mech 76:177–185

    ADS  Google Scholar 

  55. Mei CC, Li Y (2004) Evolution of solitons over a randomly rough seabed. Phys Rev E 70:016302

    MathSciNet  ADS  Google Scholar 

  56. Michallet H, Barthélemy E (1998) Experimental study of interfacial solitary waves. J Fluid Mech 366:159–177

    Google Scholar 

  57. Mireska HJ, Steiner M (1991) Solitary excitations in one‐dimensional magnets. Adv Phys 40:196–356

    ADS  Google Scholar 

  58. Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett45:1095–1098

    ADS  Google Scholar 

  59. Newell AC (1985) Solitons in mathematics and physics. SIAM, Philadelphia

    Google Scholar 

  60. Olver PJ (1986) Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol 107. Springer, Berlin

    Google Scholar 

  61. Ostrovsky LA, Stepanyants YA (1989) Do internal solitons exist in the ocean? Rev Geophys 27:293–310

    ADS  Google Scholar 

  62. Paquerot JF, Remoissenet M (1994) Dynamics of nonlinear blood pressure waves in large arteries. Phys Lett A 194:77–82

    ADS  Google Scholar 

  63. Peyrard M, Dauxois T (2004) Physique des solitons. EDP Sciences. CNRS Editions, Paris

    Google Scholar 

  64. Rayleigh L (1876) On waves. Phil Mag 5(1):257–279

    Google Scholar 

  65. Remoissenet M (1999) Waves called solitons – Concepts and experiments. Springer, Berlin

    Google Scholar 

  66. Rodwell MJ, Allen ST, Yu RY, Case MG, Bhattacharya U, Reddy M, Carman E,Kamegawa M, Konishi Y, Pusl J, Pullela R (1994) Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics. Proc IEEE82:1037–1058

    Google Scholar 

  67. Rogers C, Shadwick WF (1982) Bäcklund transformations and applications. Academic, New York

    Google Scholar 

  68. Rottman JW, Grimshaw R (2001) Atmospheric internal solitary waves. In: Environmental stratified flows. Kluwer, Boston, pp 61–88

    Google Scholar 

  69. RussellJS (1837) Report on the committee on waves. In: Murray J (ed) Bristol,Brit Ass Rep, London, pp 417–496

    Google Scholar 

  70. Russell JS (1839) Experimental researches into the laws of certain hydrodynamical phenomena that accompany the motion of floating bodies, andhave not previously been reduced into conformity with the known laws of the resistance of fluids. Trans Royal Soc Edinb 14:47–109

    Google Scholar 

  71. Russell JS (1844) Report on waves. In: Murray J (ed) Brit Ass Rep Adv Sci14, London, pp 311–390

    Google Scholar 

  72. Sanz–Serna JM, Christie I (1981) Petrov‐Galerkin method for nonlinear dispersive waves. J Comput Phys 39:94–102

    Google Scholar 

  73. Stokes GS (1847) On the theory of oscillatory waves. Trans Cambridge Phil Soc 8:441–473

    Google Scholar 

  74. Su CH, Gardner CS (1969) Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgersequation. J Math Phys 10:536–539

    MathSciNet  ADS  Google Scholar 

  75. Taha TR, Ablowitz MJ (1984) Analytical and numerical aspects of certain nonlinear evolution equations, (III) numerical, KdV equation. J ComputPhys 55:231–253

    MathSciNet  ADS  Google Scholar 

  76. Taniuti T, Wei CC (1968) J Phys Soc Jpn 24:941–946

    ADS  Google Scholar 

  77. Tappert F (1974) Numerical solution of the KdV equation and its generalisation by split-step Fourier method. Lec Appl Math Am Math Soc15:215–216

    MathSciNet  Google Scholar 

  78. Ustinov AV (1998) Solitons in Josephson junctions. Phys D 123:315–329

    Google Scholar 

  79. Weidman PD, Maxworthy T (1978) Experiments on strong interaction between solitary waves. J Fluid Mech 85:417–431

    ADS  Google Scholar 

  80. Yomosa S (1987) Solitary waves in large blood vessels. J Phys Soc Japan 56:506–520

    MathSciNet  ADS  Google Scholar 

  81. Yuen HC, Lake BM (1975) Nonlinear deep water waves: theory and experiments. Phys Fluids 18:956–960

    ADS  Google Scholar 

  82. Zabusky NJ, Kruskal MD (1965) Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15:240–243

    ADS  Google Scholar 

  83. Zakharov VE, Shabat AB (1972) Exact theory of two‐dimensional self‐focusing and onedimensional self‐modulation of waves in nonlinearmedia. Sov Phys JETP 34:62–69

    MathSciNet  ADS  Google Scholar 

Books and Reviews

  1. AgrawalGP (2001) Nonlinear Fiber Optics. Academic Press, Elsevier

    Google Scholar 

  2. AkmedievNN, Ankiewicz A (1997) Solitons, Nonlinear Pulses andBeams. Chapman and Hall, London

    Google Scholar 

  3. Braun OM, Kivshar YS (2004) The Frenkel–Kontorova Model. Concepts, Methodsand Applications. Springer, Berlin

    Google Scholar 

  4. BulloughRK, Caudrey P (1980) Solitons. Springer, Heidelberg

    Google Scholar 

  5. DavydovAS (1985) Solitons in Molecular Systems. Reidel, Dordrecht

    Google Scholar 

  6. Dodd RK, Eilbeck JC, Gibbon JD, Morris HC (1982) Solitons and Nonlinear WaveEquations. Academic Press, London

    Google Scholar 

  7. Drazin PG, Johnson RS (1993) Solitons: an Introduction. Cambridge University Press, Cambridge

    Google Scholar 

  8. EilenbergerG (1981) Solitons: Mathematical Methods for Physicists. Springer, Berlin

    Google Scholar 

  9. HasegawaA (1989) Optical Solitons in Fibers. Springer, Heidelberg

    Google Scholar 

  10. Infeld E, Rowlands G (2000) Nonlinear waves, Solitons and Chaos. Cambridge University Press, Cambridge

    Google Scholar 

  11. Lamb GL (1980) Elements of Soliton Theory. Wiley, New York

    Google Scholar 

  12. TodaM (1978) Theory of Nonlinear Lattices. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Marin, F. (2009). Solitons: Historical and Physical Introduction. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_506

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy