Abstract
One of the central motivations for visual analytics research is the so-called information overload—implying the challenge for human users in understanding and making decisions in presence of too much information (Yang et al. in Decision Support Systems 35(1):89–102, 2003). Visual-interactive systems, integrated with automatic data analysis techniques, can help in making use of such large data sets (Thomas and Cook, Illuminating the path: The research and development agenda for visual analytics, 2005). Visual Analytics solutions not only need to cope with data volumes that are large on the nominal scale, but also with data that show high complexity. Important characteristics of complex data are that the data items are difficult to compare in a meaningful way based on the raw data. Also, the data items may be composed of different base data types, giving rise to multiple analytical perspectives. Example data types include research data compound of several base data types, multimedia data composed of different media modalities, etc.
In this paper, we discuss the role of data complexity for visual analysis and search, and identify implications for designing respective visual analytics applications. We first introduce a data complexity model, and present current example visual analysis approaches based on it, for a selected number of complex data types. We also outline important research challenges for visual search and analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahlberg, C., & Shneiderman, B. (1994a). Visual information seeking using the FilmFinder. In Conference companion on human factors in computing systems (pp. 433–434). New York: ACM.
Ahlberg, C., & Shneiderman, B. (1994b). Visual information seeking: tight coupling of dynamic query filters with starfield displays. In Proc. SIGCHI conference on human factors in computing systems (pp. 313–317). New York: ACM.
Ahmed, Z., Yost, P., McGovern, A., & Weaver, C. (2011). Steerable clustering for visual analysis of ecosystems. In EuroVA international workshop on visual analytics.
Andrienko, N., & Andrienko, G. (2007). Designing visual analytics methods for massive collections of movement data. Cartographica, 42(2), 117–138.
Andrienko, G., & Andrienko, N. (2010). Interactive cluster analysis of diverse types of spatio-temporal data. ACM Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) Explorations, 11, 19–28.
Andrienko, G., Andrienko, N., & Wrobel, S. (2007). Visual analytics tools for analysis of movement data. ACM Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) Explorations, 9(2), 38–46.
Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., & Giannotti, F. (2009). Interactive visual clustering of large collections of trajectories. In Proceedings of IEEE symposium on visual analytics science and technology (pp. 3–10).
Bernard, J., Brase, J., Fellner, D., Koepler, O., Kohlhammer, J., Ruppert, T., Schreck, T., & Sens, I. (2010). A visual digital library approach for time-oriented scientific primary data. In Research and advanced technology for digital libraries (pp. 352–363).
Berndt, R., Blümel, I., Krottmaier, H., Wessel, R., & Schreck, T. (2009). Demonstration of user interfaces for querying in 3D architectural content in PROBADO3D. In Lecture notes in computer science: Vol. 5714. European conference on digital libraries (pp. 491–492). Berlin: Springer.
Bremm, S., Landesberger, T. V., Bernard, J., & Schreck, T. (2011a). Assisted descriptor selection based on visual comparative data analysis. Computer Graphics Forum, 30(3), 891–900.
Bremm, S., von Landesberger, T., Andrienko, G., & Andrienko, N. (2011b). Interactive analysis of object group changes over time. In EuroVA international workshop on visual analytics.
Card, S. C., Mackinlay, J., & Shneiderman, B. (1999). Readings in information visualization: Using vision to think. San Mateo: Morgan Kaufmann Publishers.
Cui, W., Zhou, H., Qu, H., Wong, P. C., & Li, X. (2008). Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1277–1284.
Datta, R., Joshi, D., Li, J., & Wang, J. (2008). Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (CSUR), 40(2), 5.
Deselaers, T., Keysers, D., & Ney, H. (2008). Features for image retrieval: An experimental comparison. Information Retrieval, 11(2), 77–107.
Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml.
Grinstein, G., Plaisant, C., Laskowski, S., O’connell, T., Scholtz, J., & Whiting, M. (2008). VAST 2008 challenge: Introducing mini-challenges. In IEEE symposium on visual analytics science and technology (pp. 195–196).
Ivanov, Y., Wren, C., Sorokin, A., & Kaur, I. (2007). Visualizing the history of living spaces. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1153–1160.
Keim, D., Kohlhammer, J., May, T., & Tomas, J. (2006). Event summary of the workshop on visual analytics. Computers & Graphics, 30(2), 284–286.
Keim, D. A., Mansmann, F., Schneidewind, J., Thomas, J., & Ziegler, H. (2008). Visual analytics: scope and challenges. In S. Simoff, M. H. Boehlen, & A. Mazeika (Eds.) Lecture notes in computer science (LNCS). Visual data mining: Theory, techniques and tools for visual analytics. Berlin: Springer.
Keim, D., Kohlhammer, J., Ellis, G., & Mansmann, F. (Eds.) (2010). Mastering the information age – solving problems with visual analytics. Eurographics.
Kohonen, T. (2001). Self-organizing maps (3rd edn.). Berlin: Springer.
Kosara, R., Bendix, F., & Hauser, H. (2006). Parallel sets: Interactive exploration and visual analysis of categorical data. In IEEE transactions on visualization and computer graphics (pp. 558–568).
Landesberger, T. V., Bremm, S., Bernard, J., & Schreck, T. (2010). Smart query definition for content-based search in large sets of graphs. In EuroVAST 2010 (pp. 7–12). Goslar: European Association for Computer Graphics (Eurographics), Eurographics Association.
PANGAEA Publishing Network for Geoscientific & Environmental Data (2012). http://www.pangaea.de/.
Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G., & Theodoridis, Y. (2007). Similarity search in trajectory databases. In Proceedings of international symposium on temporal representation and reasoning (pp. 129–140).
Rüger, S. (2010). Multimedia information retrieval. Synthesis lectures on information concepts, retrieval and services. Morgan & Claypool Publishers.
Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Shape modeling applications proceedings (pp. 167–178). IEEE.
Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In IEEE visual languages (pp. 336–343).
Smeaton, A. F., Over, P., & Kraaij, W. (2006). Evaluation campaigns and trecvid. In Proc. ACM international workshop on multimedia information retrieval (pp. 321–330). New York: ACM Press.
Tangelder, J. W. H., & Veltkamp, R. C. (2008). A survey of content based 3d shape retrieval methods. Multimedia Tools and Applications, 39(3), 441–471.
Thomas, J., & Cook, K. (2005). Illuminating the path: The research and development agenda for visual analytics. Los Alamitos: IEEE Computer Society.
VASA Addresses Cascading Effects Across Critical Infrastructures (2011). http://www.theivac.org/content/vasa-addresses-cascading-effects-across-critical-infrastructures. Last accessed on Aug. 11, 2011.
VIS-SENSE: Visual Analytic Representation of Large Datasets for Enhancing Network Security (2011). http://www.vis-sense.eu. Last accessed on Aug. 11, 2011.
von Landesberger, T., Goerner, M., & Schreck, T. (2009). Visual analysis of graphs with multiple connected components. In Proceedings of IEEE symposium on visual analytics science and technology.
Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., & Crow, V. (1995). Visualizing the non-visual: Spatial analysis and interaction with information from text documents. In Proceedings of IEEE symposium on information visualization (pp. 51–58).
Yang, C., Chen, H., & Honga, K. (2003). Visualization of large category map for internet browsing. Decision Support Systems, 35(1), 89–102.
Acknowledgements
This work has been supported by the following research programs and projects: The projects Visual Feature Space Analysis and Visual Analytics Methods for Modeling in Medical Imaging, funded by the German Research Foundation (DFG) within the Strategic Research Initiative on Scalable Visual Analytics (SPP 1335); the project VIS-SENSE funded by the European Commission’s Seventh Framework Programme (FP7 2007-2013) under grant agreement Nr. 257495; the THESEUS Programm funded by the German Federal Ministry of Economics and Technology; the German part of the project VASA funded by the German Federal Ministry of Education and Research; the PROBADO project funded by the German Research Foundation (DFG Leistungszentrum für Forschungsinformation); and the project VisInfo funded by the Leibniz Association (WGL). We are grateful for helpful collaboration with Prof. Kay Hamacher and other colleagues within research projects.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag London Limited
About this chapter
Cite this chapter
von Landesberger, T., Schreck, T., Fellner, D.W., Kohlhammer, J. (2012). Visual Search and Analysis in Complex Information Spaces—Approaches and Research Challenges. In: Dill, J., Earnshaw, R., Kasik, D., Vince, J., Wong, P. (eds) Expanding the Frontiers of Visual Analytics and Visualization. Springer, London. https://doi.org/10.1007/978-1-4471-2804-5_4
Download citation
DOI: https://doi.org/10.1007/978-1-4471-2804-5_4
Publisher Name: Springer, London
Print ISBN: 978-1-4471-2803-8
Online ISBN: 978-1-4471-2804-5
eBook Packages: Computer ScienceComputer Science (R0)