Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1685 Accesses

Abstract

This introductory chapter describes the SIMBAD project, which represents the first systematic attempt at bringing to full maturation a paradigm shift that is just emerging within the pattern recognition and machine learning domains, where researchers are becoming increasingly aware of the importance of similarity information per se, as opposed to the classical (feature-based) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    From: Artificial Cognitive Systems in FP7: A Report on Expert Consultations for the EU Seventh Framework Programme 2007–2013 for Research and Technology Development.

  2. 2.

    A set of distances D is said to be Euclidean (or geometric) if there exists a configuration of points in some Euclidean space whose interpoint distances are given by D. In the sequel, the terms geometric and Euclidean will be used interchangeably. The term (geo)metric is an abbreviation to indicate the case of a distance that satisfies either the Euclidean or the metric properties.

References

  1. Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Google Scholar 

  2. Balcan, M.F., Blum, A., Srebro, N.: A theory of learning with similarity functions. Mach. Learn. 72(1–2), 89–112 (2008)

    Article  Google Scholar 

  3. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987)

    Article  Google Scholar 

  4. Bridgman, P.W.: The Logic of Modern Physics. MacMillan, New York (1927)

    Google Scholar 

  5. Bunke, H., Sanfeliu, A.: Syntactic and Structural Pattern Recognition: Theory and Applications. World Scientific, Singapore (1990)

    Book  MATH  Google Scholar 

  6. Dubuisson, M.P., Jain, A.K.: Modified Hausdorff distance for object matching. In: Proc. Int. Conf. Pattern Recognition (ICPR), pp. 566–568 (1994)

    Chapter  Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000)

    Google Scholar 

  8. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  9. Edelman, S.: Representation and Recognition in Vision. MIT Press, Cambridge (1999)

    Google Scholar 

  10. Goldstone, R.L., Son, J.Y.S.: In: Holyoak, K., Morrison, R. (eds.) The Cambridge Handbook of Thinking and Reasoning, pp. 13–36. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  11. Jacobs, D.W., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances: Image retrieval and class representation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 583–600 (2000)

    Article  Google Scholar 

  12. Kleinberg, J.: Authoritative sources in a hyperlink environment. In: Proc. 9th ACMSIAM Symposium on Discrete Algorithms, pp. 668–677 (1998)

    Google Scholar 

  13. Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal About the Mind. University of Chicago Press, Chicago (1987)

    Book  Google Scholar 

  14. Mayr, E.: The Growth of Biological Thought. Harvard University Press, Cambridge (1982)

    Google Scholar 

  15. Popper, K.R.: Conjectures and Refutations: the Growth of Scientific Knowledge. Routledge, London (1963)

    Google Scholar 

  16. Resnik, M.D.: Mathematics as a Science of Patterns. Clarendon, Oxford (1997)

    MATH  Google Scholar 

  17. Rorty, R.: A world without substances and essences. In: Philosophy and Social Hope, pp. 47–71. Penguin, London (1999)

    Google Scholar 

  18. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–106 (2008)

    Google Scholar 

  19. von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: Science or art? In: JMLR: Workshop and Conference Proceedings, vol. 27, pp. 65–79 (2012)

    Google Scholar 

  20. Watanabe, S.: Pattern Recognition: Human and Mechanical. Wiley, New York (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Pelillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Pelillo, M. (2013). Introduction: The SIMBAD Project. In: Pelillo, M. (eds) Similarity-Based Pattern Analysis and Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5628-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5628-4_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5627-7

  • Online ISBN: 978-1-4471-5628-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy