Abstract
In this chapter, we compare and contrast two approaches to the problem of embedding non-Euclidean data, namely geometric and structure preserving embedding. Under the first heading, we explore how spherical embedding can be used to embed data onto the surface of sphere of optimal radius. Here we explore both elliptic and hyperbolic geometries, i.e., positive and negative curvatures. Our results on synthetic and real data show that the elliptic embedding performs well under noisy conditions and can deliver low-distortion embeddings for a wide variety of datasets. Hyperbolic data seems to be much less common (at least in our datasets) and is more difficult to accurately embed. Under the second heading, we show how the Ihara zeta function can be used to embed hypergraphs in a manner which reflects their underlying relational structure. Specifically, we show how a polynomial characterization derived from the Ihara zeta function leads to an embedding which captures the prime cycle structure of the hypergraphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., Belongie, S.: Beyond pairwise clustering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 838–845 (2005)
Agarwal, S., Branson, K., Belongie, S.: Higher-order learning with graphs. In: Proceedings of the International Conference on Machine Learning, pp. 17–24 (2006)
Bai, X., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recognit. 42(11), 2589–2606 (2009)
Baum, L.E., Eagon, J.A.: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Am. Math. Soc. 73, 360–363 (1967)
Bartholdi, L.: Counting paths in graphs. Enseign. Math. 45, 83–131 (1999)
Bass, H.: The Ihara–Selberg zeta function of a tree lattice. Int. J. Math. 6, 717–797 (1992)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)
Behmo, R., Paragios, N., Prinet, V.: Graph commute times for image representation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)
Bolla. Spectra, M.: Euclidean representations and clusterings of hypergraphs. Discrete Math. 117 (1993)
Bretto, A., Cherifi, H., Aboutajdine, D.: Hypergraph imaging: an overview. Pattern Recognit. 35(3), 651–658 (2001)
Brook, B.P.: The coefficients of the characteristic polynomial in terms of the eigenvalues and the elements of an n×n matrix. Appl. Math. Lett. 19(6), 511–515 (2006)
Broom, M., Cannings, C., Vickers, G.T.: Multi-player matrix games. Bull. Math. Biol. 59(5), 931–952 (1997)
Bunke, H., Dickinson, P., Neuhaus, M., Stettler, M.: Matching of hypergraphs—algorithms, applications, and experiments. Stud. Comput. Intell. 91, 131–154 (2008)
Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognit. Lett. 19(3), 255–259 (1998)
Cameron, P.J.: Strongly regular graphs. In: Topics in Algebraic Graph Theory, pp. 203–221. Cambridge University Press, Cambridge (2004)
Chen, G., Lerman, G.: Spectral curvature clustering (SCC). Int. J. Comput. Vis. 81(3), 317–330 (2009)
Chen, G., Lerman, G.: Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found. Comput. Math. 9, 517–558 (2009)
Chen, G., Atev, S., Lerman, G.: Kernel spectral curvature clustering (KSCC). In: Proceedings of International Workshop on Dynamical Vision, pp. 765–772 (2009)
Chertok, M., Keller, Y.: Efficient high order matching. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2205–2215 (2010)
Chung, F.: Spectral Graph Theory. Am. Math. Soc., Providence (1992)
Chung, F.: The Laplacian of a hypergraph. In: AMS DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 10, pp. 21–36 (1993)
Cvetković, D., Rowlinson, P., Simić, S.K.: Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math. (Belgr.) 81(95), 11–27 (2007)
Daitch, S.I., Kelner, J.A., Spielman, D.A.: Fitting a graph to vector data. In: Proceedings of International Conference on Machine Learning, pp. 201–208 (2009)
Duchenne, O., Bach, F.R., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1980–1987 (2009)
Emms, D.: Analysis of graph structure using quantum walks. Ph.D. Thesis, University of York (2008)
Emms, D., Hancock, E.R., Severini, S., Wilson, R.C.: A matrix representation of graphs and its spectrum as a graph invariant. Electron. J. Comb. 13(R34) (2006)
Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognit. 42(9), 1988–2002 (2009)
Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median graph computation by means of graph embedding in vector spaces. Pattern Recognit. 43(4), 1642–1655 (2010)
Fischer, B., Buhmann, J.M.: Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 513–518 (2003)
Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical data: an approach based on dynamical systems. VLDB J. 8(4–3), 222–236 (2000)
Govindu, V.M.: A tensor decomposition for geometric grouping and segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1150–1157 (2005)
Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, pp. 212–219 (1996)
Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(9), 1074–1085 (1992)
Harris, C.G., Stephens, M.J.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1994)
Hashimoto, K.: Artin-type L-functions and the density theorem for prime cycles on finite graphs. Adv. Stud. Pure Math. 15, 211–280 (1989)
He, X., Cai, D., Niyogi, P.: Tensor subspace analysis. In: Proceedings of Advances in Neural Information Processing Systems, pp. 507–514 (2005)
He, X., Cai, D., Liu, H., Han, J.: Image clustering with tensor representation. In: Proceedings of ACM Multimedia, pp. 132–140 (2005)
He, Z., Cichocki, A., Xie, S., Choi, K.: Detecting the number of clusters in n-way probabilistic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2006–2021 (2010)
Ihara, Y.: Discrete subgroups of PL(2,k φ ). In: Proceedings of Symposium on Pure Mathematics, pp. 272–278 (1965)
Ihara, Y.: On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Jpn. 18, 219–235 (1966)
Jebara, T., Wang, J., Chang, S.F.: Graph construction and b-matching for semi-supervised learning. In: Proceedings of International Conference on Machine Learning, pp. 441–448 (2009)
Kondor, R., Borgwardt, K.M.: The skew spectrum of graphs. In: Proceedings of International Conference on Machine Learning, pp. 496–503 (2008)
Kondor, R., Shervashidze, N., Borgwardt, K.M.: The graphlet spectrum. In: Proceedings of International Conference on Machine Learning, pp. 529–536 (2009)
Kotani, M., Sunada, T.: Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo 7(1), 7–25 (2000)
Lerman, G., Whitehouse, J.T.: On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions. J. Approx. Theory 156(1), 52–81 (2009)
Li, W., Sole, P.: Spectra of regular graphs and hypergraphs and orthogonal polynomials. Eur. J. Comb. 17, 461–477 (1996)
Liu, X., Yan, S., Jin, H.: Projective nonnegative graph embedding. IEEE Trans. Image Process. 19(5), 1126–1137 (2010)
Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognit. 36(10), 2213–2223 (2003)
Mantrach, A., Yen, L., Callut, J., Francoisse, K., Shimbo, M., Saerens, M.: The sum-over-paths covariance kernel: a novel covariance measure between nodes of a directed graph. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1112–1126 (2010)
Maier, M., von Luxburg, U., Hein, M.: Influence of graph construction on graph-based clustering measures. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1025–1032 (2008)
Mizuno, H., Sato, I.: Bartholdi zeta function of graph coverings. J. Comb. Theory, Ser. B 89(1), 27–41 (2003)
Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96 (1996)
Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)
Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1873–1890 (2007)
Ramon, J., Gartner, T.: Expressivity versus efficiency of graph kernels. In: Proceedings of First International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74 (2003)
Ren, P., Wilson, R.C., Hancock, E.R.: Spectral embedding of feature hypergraphs. In: Proceedings of Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, pp. 308–317 (2008)
Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)
Riesen, K., Bunke, H.: Graph classification by means of Lipschitz embedding. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(6), 1472–1483 (2009)
Robles-Kelly, A., Hancock, E.R.: A probabilistic spectral framework for grouping and segmentation. Pattern Recognit. 37(7), 1387–1405 (2004)
Rodriguez, J.A.: On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear Multilinear Algebra 51, 285–297 (2003)
Rota Bulò, S., Albarelli, A., Pelillo, M., Torsello, A.: A hypergraph-based approach to affine parameters estimation. In: Proceedings of the International Conference on Pattern Recognition, pp. 1–4 (2008)
Rota Bulò, S., Torsello, A., Pelillo, M.: A game-theoretic approach to partial clique enumeration. Image Vis. Comput. 27(7), 911–922 (2009)
Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. In: Proceedings of Neural Information Processing Conference, vol. 22, pp. 1571–1579 (2009)
Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1312–1327 (2013)
Rota Bulò, S., Hancock, E.R., Aziz, F., Pelillo, M.: Efficient computation of Ihara coefficients using the Bell polynomial recursion. Linear Algebra Appl. 436(5), 1436–1441 (2012)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)
Sato, I.: A new Bartholdi zeta function of a graph. Int. J. Algebra Comput. 1(6), 269–281 (2007)
Savchenko, S.V.: The zeta function and Gibbs measures. Russ. Math. Surv. 48(1), 189–190 (1993)
Scott, G., Storm, C.K.: The coefficients of the Ihara zeta function. Involve—J. Math. 1(2), 217–233 (2008)
Sengupta, K., Boyer, K.L.: Organizing large structural modelbases. IEEE Trans. Pattern Anal. Mach. Intell. 17(4), 321–332 (1995)
Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Plenum, New York (1994)
Shashua, A., Levin, A.: Linear image coding for regression and classification using the tensor-rank principle. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 623–630 (2001)
Shashua, A., Zass, R., Hazan, T.: Multi-way clustering using super-symmetric non-negative tensor factorization. In: Proceedings of the European Conference on Computer Vision, pp. 595–608 (2006)
Shaw, B., Jebara, T.: Structure preserving embedding. In: Proceedings of International Conference on Machine Learning, pp. 937–944 (2009)
Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1660–1668 (2009)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings. Adv. Math. 121, 124–165 (1996)
Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings, II. Adv. Math. 154, 132–195 (2000)
Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings, III. Adv. Math. 208(2), 467–489 (2007)
Storm, C.K.: The zeta function of a hypergraph. Electron. J. Comb. 13 (2006)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Torsello, A., Robles-Kelly, A., Hancock, E.R.: Discovering shape classes using tree edit distance and pairwise clustering. Int. J. Comput. Vis. 72(3), 259–285 (2007)
Torsello, A., Hancock, E.R.: Learning Shape-Classes Using a Mixture of Tree-Unions. IEEE Trans. Pattern Anal. Mach. Intell. 954–967 (2006)
Tsai, W.H., Fu, K.S.: Subgraph error-correcting isomorphism for syntactic pattern recognition. IEEE Trans. Syst. Man Cybern. 13(1), 48–62 (1983)
Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: tensorFaces. In: Proceedings of the European Conference on Computer Vision, pp. 447–460 (2002)
Vishwanathan, S.V.N., Borgwardt, K.M., Kondor, I.R., Schraudolph, N.N.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)
Wang, C., Song, Z., Yan, S., Zhang, L., Zhang, H.J.: Multiplicative nonnegative graph embedding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 389–396 (2009)
Watanabe, Y., Fukumizu, K.: Graph zeta function in the Bethe free energy and loopy belief propagation. In: Proceedings Neural Information Processing Systems, pp. 2017–2025 (2009)
Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proceedings of International Conference on Computer Vision, pp. 975–982 (1999)
Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)
Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees. Pattern Recognit. 41(9), 2833–2841 (2008)
Wong, A.K.C., Lu, S.W., Rioux, M.: Recognition and shape synthesis of 3D objects based on attributed hypergraphs. IEEE Trans. Pattern Anal. Mach. Intell. 11(3), 279–290 (1989)
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)
Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X., Zhang, H.J.: Discriminant analysis with tensor representation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 526–532 (2005)
Yang, J., Yan, S., Fu, Y., Li, X., Huang, T.S.: Non-negative graph embedding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)
Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for the graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2227–2242 (2009)
Zass, R., Shashua, A.: A unifying approach to hard and probabilistic clustering. In: Proceedings of International Conference on Computer Vision, pp. 294–301 (2005)
Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)
Zhao, D., Tang, X.: Cyclizing clusters via zeta function of a graph. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1953–1960 (2008)
Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1601–1608 (2007)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2319–2323 (2000)
Pekalska, E., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-Euclidean or non-metric measures can be informative. In: Proceedings of SSPR/SPR, pp. 871–880 (2006)
Lindman, H., Caelli, T.: Constant curvature Riemannian scaling. J. Math. Psychol. 89–109 (1978)
Cox, T.F., Cox, M.A.A.: In: Multidimensional Scaling on a Sphere, pp. 2943–2953 (1991)
Shavitt, Y., Tankel, T.: Hyperbolic embedding of Internet graph for distance estimation and overlay construction. In: IEEE/ACM Transactions on Networking, pp. 25–36 (2008)
Hubert, L., Arabie, P., Meulman, J.: Linear and circular unidimensional scaling for symmetric proximity matrices. Br. J. Math. Stat. Psychol. 253–284 (1997)
Robles-Kelly, A., Hancock, E.R.: A Riemannian approach to graph embedding. Pattern Recognit. 1042–1056 (2007)
Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific, Singapore (2005)
Lee, W.J., Duin, R.P.W.: An inexact graph comparison approach in joint eigenspace. In: Proceedings of SS+SPR2008 (2008)
Scannell, J., Blakemore, C., Young, M.: Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 1463–1483 (1995)
Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Sign language recognition by combining statistical DTW and independent classification. IEEE Trans. Pattern Anal. Mach. Intell. 2040–2046 (2008)
Roth, V., Laub, J., Buhmann, J.M., Mueller, K.-R.: Going metric: denoising pairwise data. In: Advances in Neural Information Processing Systems, pp. 841–856 (2003)
Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 286–299 (2007)
Jain, A.K., Zongker, D.: Representation and recognition of handwritten digits using deformable templates. IEEE Trans. Pattern Anal. Mach. Intell. 1386–1391 (1997)
Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 995–1005 (2004)
Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: NIPS (2007)
Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 377–388 (1996)
Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100), Technical Report CUCS-006-96 (1996)
Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. In: Pattern Recognition, pp. 2213–2230 (2003)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. In: International Journal of Computer Vision, pp. 41–66 (2006)
Bretto, A., Cherifi, H., Aboutajdine, D.: Hypergraph imaging: an overview. In: Pattern Recognition, pp. 651–658 (2002)
Ren, P., Aleksić, T., Wilson, R.C., Hypergraphs, E.R.H.: Characteristic polynomials and the Ihara zeta function. In: Proceedings of CAIP (2009)
Friedman, N., Koller, D.: Being Bayesian about Bayesian Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks. Mach. Learn. 95–125 (2003)
Torgerson, W.S.: Theory and Methods of Scaling. Wiley, New York (1958)
Laub, J., Roth, V., Buhmann, J.M., Müller, K.R.: On the information and representation of non-Euclidean pairwise data. Pattern Recognit. 1815–1826 (2006)
Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proceedings of ICML (2002)
Wu, G., Chang, E.Y., Zhang, Z.: Learning with non-metric proximity matrices. In: ACM International Conference on Multimedia, pp. 411–414 (2005)
Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of non-metric proximity data. IEEE Trans. Pattern Anal. Mach. Intell. 1540–1551 (2003)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, New York (1999)
Krauthgamer, R., Linial, N., Magen, A.: Metric embeddings: Beyond one-dimensional distortion. Discrete Comput. Geom. 339–356 (2004)
Hein, M., Audibert, J.Y., Luxburg, U.V.: From graphs to manifolds—weak and strong pointwise consistency of graph Laplacians. In: Annual Conference on Learning Theory (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this chapter
Cite this chapter
Ren, P., Aziz, F., Han, L., Xu, E., Wilson, R.C., Hancock, E.R. (2013). Geometricity and Embedding. In: Pelillo, M. (eds) Similarity-Based Pattern Analysis and Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5628-4_6
Download citation
DOI: https://doi.org/10.1007/978-1-4471-5628-4_6
Publisher Name: Springer, London
Print ISBN: 978-1-4471-5627-7
Online ISBN: 978-1-4471-5628-4
eBook Packages: Computer ScienceComputer Science (R0)