Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1739 Accesses

Abstract

In this chapter, we compare and contrast two approaches to the problem of embedding non-Euclidean data, namely geometric and structure preserving embedding. Under the first heading, we explore how spherical embedding can be used to embed data onto the surface of sphere of optimal radius. Here we explore both elliptic and hyperbolic geometries, i.e., positive and negative curvatures. Our results on synthetic and real data show that the elliptic embedding performs well under noisy conditions and can deliver low-distortion embeddings for a wide variety of datasets. Hyperbolic data seems to be much less common (at least in our datasets) and is more difficult to accurately embed. Under the second heading, we show how the Ihara zeta function can be used to embed hypergraphs in a manner which reflects their underlying relational structure. Specifically, we show how a polynomial characterization derived from the Ihara zeta function leads to an embedding which captures the prime cycle structure of the hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., Belongie, S.: Beyond pairwise clustering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 838–845 (2005)

    Google Scholar 

  2. Agarwal, S., Branson, K., Belongie, S.: Higher-order learning with graphs. In: Proceedings of the International Conference on Machine Learning, pp. 17–24 (2006)

    Google Scholar 

  3. Bai, X., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recognit. 42(11), 2589–2606 (2009)

    MATH  Google Scholar 

  4. Baum, L.E., Eagon, J.A.: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Am. Math. Soc. 73, 360–363 (1967)

    MathSciNet  MATH  Google Scholar 

  5. Bartholdi, L.: Counting paths in graphs. Enseign. Math. 45, 83–131 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Bass, H.: The Ihara–Selberg zeta function of a tree lattice. Int. J. Math. 6, 717–797 (1992)

    MathSciNet  Google Scholar 

  7. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    MATH  Google Scholar 

  8. Behmo, R., Paragios, N., Prinet, V.: Graph commute times for image representation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  9. Bolla. Spectra, M.: Euclidean representations and clusterings of hypergraphs. Discrete Math. 117 (1993)

    Google Scholar 

  10. Bretto, A., Cherifi, H., Aboutajdine, D.: Hypergraph imaging: an overview. Pattern Recognit. 35(3), 651–658 (2001)

    Google Scholar 

  11. Brook, B.P.: The coefficients of the characteristic polynomial in terms of the eigenvalues and the elements of an n×n matrix. Appl. Math. Lett. 19(6), 511–515 (2006)

    MathSciNet  Google Scholar 

  12. Broom, M., Cannings, C., Vickers, G.T.: Multi-player matrix games. Bull. Math. Biol. 59(5), 931–952 (1997)

    MATH  Google Scholar 

  13. Bunke, H., Dickinson, P., Neuhaus, M., Stettler, M.: Matching of hypergraphs—algorithms, applications, and experiments. Stud. Comput. Intell. 91, 131–154 (2008)

    Google Scholar 

  14. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognit. Lett. 19(3), 255–259 (1998)

    MATH  Google Scholar 

  15. Cameron, P.J.: Strongly regular graphs. In: Topics in Algebraic Graph Theory, pp. 203–221. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  16. Chen, G., Lerman, G.: Spectral curvature clustering (SCC). Int. J. Comput. Vis. 81(3), 317–330 (2009)

    Google Scholar 

  17. Chen, G., Lerman, G.: Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found. Comput. Math. 9, 517–558 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Chen, G., Atev, S., Lerman, G.: Kernel spectral curvature clustering (KSCC). In: Proceedings of International Workshop on Dynamical Vision, pp. 765–772 (2009)

    Google Scholar 

  19. Chertok, M., Keller, Y.: Efficient high order matching. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2205–2215 (2010)

    Google Scholar 

  20. Chung, F.: Spectral Graph Theory. Am. Math. Soc., Providence (1992)

    Google Scholar 

  21. Chung, F.: The Laplacian of a hypergraph. In: AMS DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 10, pp. 21–36 (1993)

    Google Scholar 

  22. Cvetković, D., Rowlinson, P., Simić, S.K.: Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math. (Belgr.) 81(95), 11–27 (2007)

    Google Scholar 

  23. Daitch, S.I., Kelner, J.A., Spielman, D.A.: Fitting a graph to vector data. In: Proceedings of International Conference on Machine Learning, pp. 201–208 (2009)

    Google Scholar 

  24. Duchenne, O., Bach, F.R., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1980–1987 (2009)

    Google Scholar 

  25. Emms, D.: Analysis of graph structure using quantum walks. Ph.D. Thesis, University of York (2008)

    Google Scholar 

  26. Emms, D., Hancock, E.R., Severini, S., Wilson, R.C.: A matrix representation of graphs and its spectrum as a graph invariant. Electron. J. Comb. 13(R34) (2006)

    Google Scholar 

  27. Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognit. 42(9), 1988–2002 (2009)

    MATH  Google Scholar 

  28. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median graph computation by means of graph embedding in vector spaces. Pattern Recognit. 43(4), 1642–1655 (2010)

    MATH  Google Scholar 

  29. Fischer, B., Buhmann, J.M.: Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 513–518 (2003)

    Google Scholar 

  30. Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical data: an approach based on dynamical systems. VLDB J. 8(4–3), 222–236 (2000)

    Google Scholar 

  31. Govindu, V.M.: A tensor decomposition for geometric grouping and segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1150–1157 (2005)

    Google Scholar 

  32. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, pp. 212–219 (1996)

    Google Scholar 

  33. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(9), 1074–1085 (1992)

    Google Scholar 

  34. Harris, C.G., Stephens, M.J.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1994)

    Google Scholar 

  35. Hashimoto, K.: Artin-type L-functions and the density theorem for prime cycles on finite graphs. Adv. Stud. Pure Math. 15, 211–280 (1989)

    Google Scholar 

  36. He, X., Cai, D., Niyogi, P.: Tensor subspace analysis. In: Proceedings of Advances in Neural Information Processing Systems, pp. 507–514 (2005)

    Google Scholar 

  37. He, X., Cai, D., Liu, H., Han, J.: Image clustering with tensor representation. In: Proceedings of ACM Multimedia, pp. 132–140 (2005)

    Google Scholar 

  38. He, Z., Cichocki, A., Xie, S., Choi, K.: Detecting the number of clusters in n-way probabilistic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2006–2021 (2010)

    Google Scholar 

  39. Ihara, Y.: Discrete subgroups of PL(2,k φ ). In: Proceedings of Symposium on Pure Mathematics, pp. 272–278 (1965)

    Google Scholar 

  40. Ihara, Y.: On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Jpn. 18, 219–235 (1966)

    MathSciNet  MATH  Google Scholar 

  41. Jebara, T., Wang, J., Chang, S.F.: Graph construction and b-matching for semi-supervised learning. In: Proceedings of International Conference on Machine Learning, pp. 441–448 (2009)

    Google Scholar 

  42. Kondor, R., Borgwardt, K.M.: The skew spectrum of graphs. In: Proceedings of International Conference on Machine Learning, pp. 496–503 (2008)

    Google Scholar 

  43. Kondor, R., Shervashidze, N., Borgwardt, K.M.: The graphlet spectrum. In: Proceedings of International Conference on Machine Learning, pp. 529–536 (2009)

    Google Scholar 

  44. Kotani, M., Sunada, T.: Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo 7(1), 7–25 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Lerman, G., Whitehouse, J.T.: On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions. J. Approx. Theory 156(1), 52–81 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Li, W., Sole, P.: Spectra of regular graphs and hypergraphs and orthogonal polynomials. Eur. J. Comb. 17, 461–477 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Liu, X., Yan, S., Jin, H.: Projective nonnegative graph embedding. IEEE Trans. Image Process. 19(5), 1126–1137 (2010)

    MathSciNet  Google Scholar 

  48. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognit. 36(10), 2213–2223 (2003)

    MATH  Google Scholar 

  49. Mantrach, A., Yen, L., Callut, J., Francoisse, K., Shimbo, M., Saerens, M.: The sum-over-paths covariance kernel: a novel covariance measure between nodes of a directed graph. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1112–1126 (2010)

    Google Scholar 

  50. Maier, M., von Luxburg, U., Hein, M.: Influence of graph construction on graph-based clustering measures. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1025–1032 (2008)

    Google Scholar 

  51. Mizuno, H., Sato, I.: Bartholdi zeta function of graph coverings. J. Comb. Theory, Ser. B 89(1), 27–41 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96 (1996)

    Google Scholar 

  53. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)

    Google Scholar 

  54. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1873–1890 (2007)

    Google Scholar 

  55. Ramon, J., Gartner, T.: Expressivity versus efficiency of graph kernels. In: Proceedings of First International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74 (2003)

    Google Scholar 

  56. Ren, P., Wilson, R.C., Hancock, E.R.: Spectral embedding of feature hypergraphs. In: Proceedings of Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, pp. 308–317 (2008)

    Google Scholar 

  57. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

    Google Scholar 

  58. Riesen, K., Bunke, H.: Graph classification by means of Lipschitz embedding. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(6), 1472–1483 (2009)

    Google Scholar 

  59. Robles-Kelly, A., Hancock, E.R.: A probabilistic spectral framework for grouping and segmentation. Pattern Recognit. 37(7), 1387–1405 (2004)

    Google Scholar 

  60. Rodriguez, J.A.: On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear Multilinear Algebra 51, 285–297 (2003)

    MathSciNet  MATH  Google Scholar 

  61. Rota Bulò, S., Albarelli, A., Pelillo, M., Torsello, A.: A hypergraph-based approach to affine parameters estimation. In: Proceedings of the International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  62. Rota Bulò, S., Torsello, A., Pelillo, M.: A game-theoretic approach to partial clique enumeration. Image Vis. Comput. 27(7), 911–922 (2009)

    Google Scholar 

  63. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. In: Proceedings of Neural Information Processing Conference, vol. 22, pp. 1571–1579 (2009)

    Google Scholar 

  64. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1312–1327 (2013)

    Google Scholar 

  65. Rota Bulò, S., Hancock, E.R., Aziz, F., Pelillo, M.: Efficient computation of Ihara coefficients using the Bell polynomial recursion. Linear Algebra Appl. 436(5), 1436–1441 (2012)

    MathSciNet  MATH  Google Scholar 

  66. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Google Scholar 

  67. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)

    MATH  Google Scholar 

  68. Sato, I.: A new Bartholdi zeta function of a graph. Int. J. Algebra Comput. 1(6), 269–281 (2007)

    MATH  Google Scholar 

  69. Savchenko, S.V.: The zeta function and Gibbs measures. Russ. Math. Surv. 48(1), 189–190 (1993)

    MathSciNet  Google Scholar 

  70. Scott, G., Storm, C.K.: The coefficients of the Ihara zeta function. Involve—J. Math. 1(2), 217–233 (2008)

    MathSciNet  MATH  Google Scholar 

  71. Sengupta, K., Boyer, K.L.: Organizing large structural modelbases. IEEE Trans. Pattern Anal. Mach. Intell. 17(4), 321–332 (1995)

    Google Scholar 

  72. Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Plenum, New York (1994)

    MATH  Google Scholar 

  73. Shashua, A., Levin, A.: Linear image coding for regression and classification using the tensor-rank principle. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 623–630 (2001)

    Google Scholar 

  74. Shashua, A., Zass, R., Hazan, T.: Multi-way clustering using super-symmetric non-negative tensor factorization. In: Proceedings of the European Conference on Computer Vision, pp. 595–608 (2006)

    Google Scholar 

  75. Shaw, B., Jebara, T.: Structure preserving embedding. In: Proceedings of International Conference on Machine Learning, pp. 937–944 (2009)

    Google Scholar 

  76. Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1660–1668 (2009)

    Google Scholar 

  77. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Google Scholar 

  78. Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings. Adv. Math. 121, 124–165 (1996)

    MathSciNet  MATH  Google Scholar 

  79. Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings, II. Adv. Math. 154, 132–195 (2000)

    MathSciNet  MATH  Google Scholar 

  80. Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings, III. Adv. Math. 208(2), 467–489 (2007)

    MathSciNet  MATH  Google Scholar 

  81. Storm, C.K.: The zeta function of a hypergraph. Electron. J. Comb. 13 (2006)

    Google Scholar 

  82. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

  83. Torsello, A., Robles-Kelly, A., Hancock, E.R.: Discovering shape classes using tree edit distance and pairwise clustering. Int. J. Comput. Vis. 72(3), 259–285 (2007)

    Google Scholar 

  84. Torsello, A., Hancock, E.R.: Learning Shape-Classes Using a Mixture of Tree-Unions. IEEE Trans. Pattern Anal. Mach. Intell. 954–967 (2006)

    Google Scholar 

  85. Tsai, W.H., Fu, K.S.: Subgraph error-correcting isomorphism for syntactic pattern recognition. IEEE Trans. Syst. Man Cybern. 13(1), 48–62 (1983)

    MathSciNet  MATH  Google Scholar 

  86. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: tensorFaces. In: Proceedings of the European Conference on Computer Vision, pp. 447–460 (2002)

    Google Scholar 

  87. Vishwanathan, S.V.N., Borgwardt, K.M., Kondor, I.R., Schraudolph, N.N.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  88. Wang, C., Song, Z., Yan, S., Zhang, L., Zhang, H.J.: Multiplicative nonnegative graph embedding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 389–396 (2009)

    Google Scholar 

  89. Watanabe, Y., Fukumizu, K.: Graph zeta function in the Bethe free energy and loopy belief propagation. In: Proceedings Neural Information Processing Systems, pp. 2017–2025 (2009)

    Google Scholar 

  90. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proceedings of International Conference on Computer Vision, pp. 975–982 (1999)

    Google Scholar 

  91. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

    Google Scholar 

  92. Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees. Pattern Recognit. 41(9), 2833–2841 (2008)

    MATH  Google Scholar 

  93. Wong, A.K.C., Lu, S.W., Rioux, M.: Recognition and shape synthesis of 3D objects based on attributed hypergraphs. IEEE Trans. Pattern Anal. Mach. Intell. 11(3), 279–290 (1989)

    Google Scholar 

  94. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Google Scholar 

  95. Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X., Zhang, H.J.: Discriminant analysis with tensor representation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 526–532 (2005)

    Google Scholar 

  96. Yang, J., Yan, S., Fu, Y., Li, X., Huang, T.S.: Non-negative graph embedding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  97. Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for the graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2227–2242 (2009)

    Google Scholar 

  98. Zass, R., Shashua, A.: A unifying approach to hard and probabilistic clustering. In: Proceedings of International Conference on Computer Vision, pp. 294–301 (2005)

    Google Scholar 

  99. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  100. Zhao, D., Tang, X.: Cyclizing clusters via zeta function of a graph. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1953–1960 (2008)

    Google Scholar 

  101. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1601–1608 (2007)

    Google Scholar 

  102. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2319–2323 (2000)

    Google Scholar 

  103. Pekalska, E., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-Euclidean or non-metric measures can be informative. In: Proceedings of SSPR/SPR, pp. 871–880 (2006)

    Google Scholar 

  104. Lindman, H., Caelli, T.: Constant curvature Riemannian scaling. J. Math. Psychol. 89–109 (1978)

    Google Scholar 

  105. Cox, T.F., Cox, M.A.A.: In: Multidimensional Scaling on a Sphere, pp. 2943–2953 (1991)

    Google Scholar 

  106. Shavitt, Y., Tankel, T.: Hyperbolic embedding of Internet graph for distance estimation and overlay construction. In: IEEE/ACM Transactions on Networking, pp. 25–36 (2008)

    Google Scholar 

  107. Hubert, L., Arabie, P., Meulman, J.: Linear and circular unidimensional scaling for symmetric proximity matrices. Br. J. Math. Stat. Psychol. 253–284 (1997)

    Google Scholar 

  108. Robles-Kelly, A., Hancock, E.R.: A Riemannian approach to graph embedding. Pattern Recognit. 1042–1056 (2007)

    Google Scholar 

  109. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific, Singapore (2005)

    Google Scholar 

  110. Lee, W.J., Duin, R.P.W.: An inexact graph comparison approach in joint eigenspace. In: Proceedings of SS+SPR2008 (2008)

    Google Scholar 

  111. Scannell, J., Blakemore, C., Young, M.: Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 1463–1483 (1995)

    Google Scholar 

  112. Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Sign language recognition by combining statistical DTW and independent classification. IEEE Trans. Pattern Anal. Mach. Intell. 2040–2046 (2008)

    Google Scholar 

  113. Roth, V., Laub, J., Buhmann, J.M., Mueller, K.-R.: Going metric: denoising pairwise data. In: Advances in Neural Information Processing Systems, pp. 841–856 (2003)

    Google Scholar 

  114. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 286–299 (2007)

    Google Scholar 

  115. Jain, A.K., Zongker, D.: Representation and recognition of handwritten digits using deformable templates. IEEE Trans. Pattern Anal. Mach. Intell. 1386–1391 (1997)

    Google Scholar 

  116. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 995–1005 (2004)

    Google Scholar 

  117. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: NIPS (2007)

    Google Scholar 

  118. Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 377–388 (1996)

    Google Scholar 

  119. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100), Technical Report CUCS-006-96 (1996)

    Google Scholar 

  120. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. In: Pattern Recognition, pp. 2213–2230 (2003)

    Google Scholar 

  121. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. In: International Journal of Computer Vision, pp. 41–66 (2006)

    Google Scholar 

  122. Bretto, A., Cherifi, H., Aboutajdine, D.: Hypergraph imaging: an overview. In: Pattern Recognition, pp. 651–658 (2002)

    Google Scholar 

  123. Ren, P., Aleksić, T., Wilson, R.C., Hypergraphs, E.R.H.: Characteristic polynomials and the Ihara zeta function. In: Proceedings of CAIP (2009)

    Google Scholar 

  124. Friedman, N., Koller, D.: Being Bayesian about Bayesian Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks. Mach. Learn. 95–125 (2003)

    Google Scholar 

  125. Torgerson, W.S.: Theory and Methods of Scaling. Wiley, New York (1958)

    Google Scholar 

  126. Laub, J., Roth, V., Buhmann, J.M., Müller, K.R.: On the information and representation of non-Euclidean pairwise data. Pattern Recognit. 1815–1826 (2006)

    Google Scholar 

  127. Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: Proceedings of ICML (2002)

    Google Scholar 

  128. Wu, G., Chang, E.Y., Zhang, Z.: Learning with non-metric proximity matrices. In: ACM International Conference on Multimedia, pp. 411–414 (2005)

    Google Scholar 

  129. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of non-metric proximity data. IEEE Trans. Pattern Anal. Mach. Intell. 1540–1551 (2003)

    Google Scholar 

  130. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, New York (1999)

    MATH  Google Scholar 

  131. Krauthgamer, R., Linial, N., Magen, A.: Metric embeddings: Beyond one-dimensional distortion. Discrete Comput. Geom. 339–356 (2004)

    Google Scholar 

  132. Hein, M., Audibert, J.Y., Luxburg, U.V.: From graphs to manifolds—weak and strong pointwise consistency of graph Laplacians. In: Annual Conference on Learning Theory (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin R. Hancock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ren, P., Aziz, F., Han, L., Xu, E., Wilson, R.C., Hancock, E.R. (2013). Geometricity and Embedding. In: Pelillo, M. (eds) Similarity-Based Pattern Analysis and Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5628-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5628-4_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5627-7

  • Online ISBN: 978-1-4471-5628-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy