Skip to main content

\(\tau \) CFI: Type-Assisted Control Flow Integrity for x86-64 Binaries

  • Conference paper
  • First Online:
Research in Attacks, Intrusions, and Defenses (RAID 2018)

Abstract

Programs aiming for low runtime overhead and high availability draw on several object-oriented features available in the C/C++ programming language, such as dynamic object dispatch. However, there is an alarmingly high number of object dispatch (i.e., forward-edge) corruption vulnerabilities, which undercut security in significant ways and are in need of a thorough solution. In this paper, we propose \(\tau {\textsc {CFI}}\), an extended control flow integrity (CFI) model that uses both the types and numbers of function parameters to enforce forward- and backward-edge control flow transfers. At a high level, it improves the precision of existing forward-edge recognition approaches by considering the type information of function parameters, which are directly extracted from the application binaries. Therefore, \(\tau {\textsc {CFI}}\) can be used to harden legacy applications for which source code may not be available. We have evaluated \(\tau {\textsc {CFI}}\) on real-world binaries including Nginx, NodeJS, Lighttpd, MySql and the SPEC CPU2006 benchmark and demonstrate that \(\tau {\textsc {CFI}}\) is able to effectively protect these applications from forward- and backward-edge corruptions with low runtime overhead. In direct comparison with state-of-the-art tools, \(\tau {\textsc {CFI}}\) achieves higher forward-edge caller-callee matching precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since an indirect call can target a function only if the function’s address is taken, there is no need to analyze functions whose addresses are not taken; this is similar to TypeArmor.

References

  1. LLVM: Clang CFI (2017). https://goo.gl/W7aMF9

  2. LLVM: Clang’s SafeStack. https://clang.llvm.org/docs/SafeStack.html

  3. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.R., Holz, T.: Counterfeit object-oriented programming. In: S&P (2015)

    Google Scholar 

  4. Crane, S., et al.: It’s a TRaP: table randomization and protection against function-reuse attacks. In: CCS (2015)

    Google Scholar 

  5. Lettner, J., et al.: Subversive-C: abusing and protecting dynamic message dispatch. In: USENIX ATC (2016)

    Google Scholar 

  6. BlueLotus Team: BCTF challenge: Bypass VTable read-only checks (2015). https://goo.gl/4RYDS2

  7. Lan, B., Li, Y., Sun, H., Su, C., Liu, Y., Zeng, Q.: Loop-oriented programming: a new code reuse attack to bypass modern defenses. In: IEEE Trustcom/BigDataSE/ISPA (2015)

    Google Scholar 

  8. Evans, I., et al.: Control Jujutsu: on the weaknesses of fine-grained control flow integrity. In: CCS (2015)

    Google Scholar 

  9. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control flow integrity. In: CCS (2005)

    Google Scholar 

  10. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control flow integrity principles, implementations, and applications. In: TISSEC (2009)

    Google Scholar 

  11. Burow, N.: Control-flow integrity: precision, security, and performance. CSUR 50, 16:1–16:33 (2017)

    Article  Google Scholar 

  12. Tan, G., Jaeger, T.: CFG construction soundness in control-flow integrity. In: PLAS (2017)

    Google Scholar 

  13. Ramalingam, G.: The undecidability of aliasing. TOPLAS 16, 1467–1471 (1994)

    Article  Google Scholar 

  14. Jang, D., Tatlock, T., Lerner, S.: SAFEDISPATCH: securing C++ virtual calls from memory corruption attacks. In: NDSS (2014)

    Google Scholar 

  15. Niu, B., Tan, G.: Modular control-flow integrity. In: PLDI (2014)

    Google Scholar 

  16. Niu, B., Tan, G.: RockJIT: securing just-in-time compilation using modular control-flow inegrity. In: CCS (2014)

    Google Scholar 

  17. Haller, I., Goktas, E., Athanasopoulos, E., Portokalidis, G., Bos, H.: ShrinkWrap: VTable protection without loose ends. In: ACSAC (2015)

    Google Scholar 

  18. Bounov, D., Gökhan K., R., Lerner, S.: Protecting C++ dynamic dispatch through VTable interleaving. In: NDSS (2016)

    Google Scholar 

  19. Tice, C., et al.: Enforcing forward-edge control-flow integrity in GCC and LLVM. In: USENIX Security (2014)

    Google Scholar 

  20. Zhang, C., et al. : Practical control flow integrity and randomization for binary executables. In: S&P (2013)

    Google Scholar 

  21. Prakash, A., Hu, X., Yin, H.: Strict protection for virtual function calls in COTS C++ binaries. In: NDSS (2015)

    Google Scholar 

  22. Zhang, C., Song, C., Zhijie, K.C., Chen, Z., Song, D.: VTint: protecting virtual function tables’ integrity. In: NDSS (2015)

    Google Scholar 

  23. Elsabagh, M., Fleck, D., Stavrou, A.: Strict virtual call integrity checking for C ++ binaries. In: ASIACCS (2017)

    Google Scholar 

  24. Pawlowski, A., et al.: MARX: uncovering class hierarchies in C++ programs. In: NDSS (2017)

    Google Scholar 

  25. Veen, V.V.D., et al.: A tough call: mitigating advanced code-reuse attacks at the binary level. In: S&P (2016)

    Google Scholar 

  26. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-pointer integrity. In: OSDI (2014)

    Google Scholar 

  27. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.: Control-flow bending: on the effectiveness of control-flow integrity. In: USENIX Security (2015)

    Google Scholar 

  28. Goktas, E., et al.: Bypassing Clang’s SafeStack for fun and profit. In: Blackhat Europe (2016). https://goo.gl/zKMHzs

  29. Dang, T., Maniatis, P., Wagner, D.: The performance cost of shadow stacks and stack canaries. In: ASIACCS (2015)

    Google Scholar 

  30. Bernat, A.R., Miller, B.P.: Anywhere, any-time binary instrumentation. In: PASTE (2011)

    Google Scholar 

  31. Andriesse, D., Chen, X., Veen, V.V.D., Slowinska, A., Bos, H.: An in-depth analysis of disassembly on full-scale x86/x64 binaries. In: USENIX Security (2016)

    Google Scholar 

  32. Mycroft, A.: Lecture Notes (2007). https://goo.gl/F7tUZj

  33. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from binary execution. In: NDSS (2010)

    Google Scholar 

  34. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 463–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_37

    Chapter  Google Scholar 

  35. Fokin, A., Derevenets, Y., Chernov, A., Troshina, K.: SmartDec: approaching C++ decompilation. In: WCRE (2011)

    Google Scholar 

  36. Balakrishnan, G., Reps, T.: DIVINE: discovering variables IN executables. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 1–28. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69738-1_1

    Chapter  Google Scholar 

  37. Caballero, J., Lin, Z.: Type inference on executables. CSUR 48, 35 (2016)

    Article  Google Scholar 

  38. Lee, B., Song, C., Kim, T., Lee, W.: Type casting verification: stopping an emerging attack vector. In: USENIX Security (2015)

    Google Scholar 

  39. Andriesse, D., Slowinska, A., Bos, H.: Compiler-agnostic function detection in binaries. In: Euro S&P (2017)

    Google Scholar 

  40. Bruening, D.: DynamoRIO. http://dynamorio.org/home.html

  41. Davi, L., et al.: MoCFI: a framework to mitigate control-flow attacks on smartphones. In: NDSS (2012)

    Google Scholar 

  42. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit mitigation using indirect branch tracing. In: USENIX Security (2013)

    Google Scholar 

  43. Zhang, M., Sekar, R.: Control flow integrity for COTS binaries. In: USENIX Security (2013)

    Google Scholar 

  44. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K.W., Franz, M.: Opaque control-flow integrity. In: NDSS (2015)

    Google Scholar 

  45. Veen, V.V.D., et al.: Practical context-sensiticve CFI. In: CCS (2015)

    Google Scholar 

  46. Payer, M., Barresi, A., Gross, T.R.: Fine-grained control-flow integrity through binary hardening. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 144–164. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20550-2_8

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their feedback, which helped to considerably improve the quality of this paper. Jens Grossklags’ research is supported by the German Institute for Trust and Safety on the Internet (DIVSI). Gang Tan is supported by US NSF grants CCF-1723571 and CNS-1624126, the Defense Advanced Research Projects Agency (DARPA) under agreement number N6600117C4052, and Office of Naval Research (ONR) under agreement number N00014-17-1-2539. Zhiqiang Lin is partially supported by US NSF grant CNS-1812553 and CNS-1834215, AFOSR award FA9550-14-1-0119, and ONR award N00014-17-1-2995.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Muntean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muntean, P., Fischer, M., Tan, G., Lin, Z., Grossklags, J., Eckert, C. (2018). \(\tau \) CFI: Type-Assisted Control Flow Integrity for x86-64 Binaries. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds) Research in Attacks, Intrusions, and Defenses. RAID 2018. Lecture Notes in Computer Science(), vol 11050. Springer, Cham. https://doi.org/10.1007/978-3-030-00470-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00470-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00469-9

  • Online ISBN: 978-3-030-00470-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy