Skip to main content

On the Incorporation of Interval-Valued Fuzzy Sets into the Bousi-Prolog System: Declarative Semantics, Implementation and Applications

  • Chapter
  • First Online:
Interactions Between Computational Intelligence and Mathematics Part 2

Part of the book series: Studies in Computational Intelligence ((SCI,volume 794))

  • 263 Accesses

Abstract

In this paper we analyse the benefits of incorporating interval-valued fuzzy sets into the Bousi-Prolog system. A syntax, declarative semantics and implementation for this extension is presented and formalised. We show, by using potential applications, that fuzzy logic programming frameworks enhanced with them can correctly work together with lexical resources and ontologies in order to improve their capabilities for knowledge representation and reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume familiarity with the theory and practice of logic programming.

  2. 2.

    A beta version can be founded at the http://www.face.ubiobio.cl/~clrubio/bousiTools/.

References

  1. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  2. Liu, H., Singh, P.: Commonsense reasoning in and over natural language. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds). Proceedings of the 8th International Conference on Knowledge-Based Intelligent Information and Engineering Systems (KES 2004), Wellington, New Zealand, 20–25, September, pp. 293–306. Springer, Berlin (2004)

    Google Scholar 

  3. León-Aráuz, P., Gómez-Romero, J., Bobillo, F.: A fuzzy ontology extension of wordnet and eurowordnet for specialized knowledge. In: Proceedings of the TKE 2012 (2012)

    Google Scholar 

  4. Rubio-Manzano, C., Pereira-Fariña, M.: Towards fuzzy lexical reasoning. J. Intell. Fuzzy Syst. 32(3), 2425–2436 (2017)

    Article  Google Scholar 

  5. Medina, J., Ojeda-Aciego, M.: Multi-adjoint logic programming. In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 823–830 (2004)

    Google Scholar 

  6. Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A Declarative Semantics for a Fuzzy Logic Language Managing Similarities and Truth Degrees, pp. 68–82. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  7. Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic programming environment for managing similarity and truth degrees (2015)

    Google Scholar 

  8. Muñoz-Hernandez, S., Pablos-Ceruelo, V., Strass, H.: Rfuzzy: syntax, semantics and implementation details of a simple and expressive fuzzy tool over prolog. Inf. Sci. 181(10), 1951–1970 (2011) (Special Issue on Information Engineering Applications Based on Lattices)

    Article  MathSciNet  Google Scholar 

  9. Straccia, U.: Managing Uncertainty and Vagueness in Description Logics, Logic Programs and Description Logic Programs, pp. 54–103. Springer, Berlin (2008)

    Chapter  Google Scholar 

  10. Le, V.H, Liu, F., Tran, D.K.: Fuzzy linguistic logic programming and its applications. Theory Pract. Log. Program. 9(03), 309–341 (2009)

    Article  MathSciNet  Google Scholar 

  11. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet: similarity: measuring the relatedness of concepts. In: Demonstration Papers at HLT-NAACL 2004. HLT-NAACL–Demonstrations ’04, Stroudsburg, PA, USA, Association for Computational Linguistics, pp. 38–41 (2004)

    Google Scholar 

  12. Turksen, I.: Four methods of approximate reasoning with interval-valued fuzzy sets. Int. J. Approx. Reason. 3(2), 121–142 (1989)

    Article  Google Scholar 

  13. Bustince, H.: Interval-valued fuzzy sets in soft computing. Int. J. Comput. Intell. Syst. 3(2), 215–222 (2010)

    Article  Google Scholar 

  14. Medina, J.: Adjoint pairs on interval-valued fuzzy sets. In: Proceedings of the 13th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2010), pp. 430–439. Springer, Berlin (2010)

    Google Scholar 

  15. Rubio-Manzano, C., Julián-Iranzo, P.: A fuzzy linguistic prolog and its applications. J. Intell. Fuzzy Syst. 26(3), 1503–1516 (2014)

    Google Scholar 

  16. Julián-Iranzo, P., Rubio-Manzano, C.: A similarity-based WAM for Bousi-Prolog, pp. 245–252. Springer, Berlin (2009)

    Google Scholar 

  17. Pereira-Fariña, M.: Some reflections on the set-based and the conditional-based interpretations of statements in syllogistic reasoning. Archiv. Philos. Hist. Soft Comput. 1/2014(1), 1–16 (2014)

    Google Scholar 

  18. Hajek, P.: Metamathematics of Fuzzy Logic. Springer Science and Business Media, Berlin (1998)

    Book  Google Scholar 

  19. Lloyd, J.: Foundations of Logic Programming. Springer, Berlin (1987)

    Chapter  Google Scholar 

  20. Julián-Iranzo, P., Rubio-Manzano, C.: A declarative semantics for Bousi Prolog. In: Proceedings of the 11th ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP ’09), pp. 149–160. ACM, New York (2009)

    Google Scholar 

  21. Ebrahim, R.: Fuzzy logic programming. Fuzzy Sets Syst. 117(2), 215–230 (2001)

    Article  MathSciNet  Google Scholar 

  22. Medina, J., Ojeda-Aciego, M., Ruíz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)

    Article  MathSciNet  Google Scholar 

  23. Rodríguez-Artalejo, M., Romero-Díaz, C.A.: A declarative semantics for CLP with qualification and proximity. Theory Pract. Log. Program. 10(4–6), 627–642 (2010)

    Article  MathSciNet  Google Scholar 

  24. Atanassov, K., Georgiev, C.: Intuitionistic fuzzy prolog. Fuzzy Sets Syst. 53(2), 121–128 (1993)

    Article  MathSciNet  Google Scholar 

  25. Guadarrama, S., Muoz, S., Vaucheret, C.: Fuzzy prolog: a new approach using soft constraints propagation. Fuzzy Sets Syst. 144(1), 127–150 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledges the comments made by reviewers. This work has been partially supported by FEDER and the State Research Agency (AEI) of the Spanish Ministry of Economy and Competition under grants TIN2016-76843-C4-2-R (AEI/FEDER, UE) and TIN2014-56633-C3-1-R, the Consellería de Cultura, Educación e Ordenación Universitaria (the Postdoctoral Training Grants 2016 and Centro singular de investigación de Galicia accreditation 2016-2019, ED431G/08) and European Regional Development Fund (ERDF). This work has been done in collaboration with the research group SOMOS (SOftware-MOdelling-Science) funded by the Research Agency and the Graduate School of Management of the Bío-Bío University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemente Rubio-Manzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rubio-Manzano, C., Pereira-Fariña, M. (2019). On the Incorporation of Interval-Valued Fuzzy Sets into the Bousi-Prolog System: Declarative Semantics, Implementation and Applications. In: Kóczy, L., Medina-Moreno, J., Ramírez-Poussa, E. (eds) Interactions Between Computational Intelligence and Mathematics Part 2. Studies in Computational Intelligence, vol 794. Springer, Cham. https://doi.org/10.1007/978-3-030-01632-6_1

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy