Abstract
Conventional radar automatic target recognition (RATR) methods using High-Resolution Range Profile (HRRP) sequences require carefully designed feature extraction techniques and plenty of HRRP waveforms, which result in insufficient recognition rate and limit in real-time recognition. To address these issues a modified end-to-end architecture consisting of a convolutional neural network (CNN) followed by a recurrent neural network (RNN) is proposed. In this model the local features of HRRPs extracted by a CNN are passed to a RNN, which avoids manual feature extraction and takes advantage of its shared parameters mechanism which enables single HRRP recognition in real-time. The effectiveness of this model is shown in this paper with numerical results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, B., Liu, H.W., Bao, Z.: Analysis of three kinds of classification based on different absolute alignment methods. Mod. Radar 28(3), 58–62 (2006)
Bojarski, M., et al.: End to end learning for self-driving cars (2016)
Chen, B., Liu, H., Chai, J., Bao, Z.: Large margin feature weighting method via linear programming. IEEE Trans. Knowl. Data Eng. 21(10), 1475–1488 (2009)
Chiang, H.C., Moses, R.L., Potter, L.C.: Model-based classification of radar images. IEEE Trans. Inf. Theory 46(5), 1842–1854 (2000)
Du, L., Liu, H., Bao, Z., Zhang, J.: Radar automatic target recognition using complex high-resolution range profiles. IET Radar Sonar Navig. 1(1), 18–26 (2007)
Du, L., Liu, H., Bao, Z.: Radar HRRP statistical recognition: parametric model and model selection. IEEE Trans. Signal Process. 56(5), 1931–1944 (2008)
Du, L., Liu, H., Bao, Z., Xing, M.: Radar HRRP target recognition based on higher order spectra. IEEE Trans. Signal Process. 53(7), 2359–2368 (2005)
Du, L., Liu, H., Wang, P., Feng, B., Pan, M., Bao, Z.: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size. IEEE Trans. Signal Process. 60(7), 3546–3559 (2012)
Du, L., Wang, P., Liu, H., Pan, M., Bao, Z.: Radar HRRP target recognition based on dynamic multi-task hidden markov model. In: Radar Conference, pp. 253–255 (2011)
Du, L., Wang, P., Liu, H., Pan, M., Chen, F., Bao, Z.: Bayesian spatiotemporal multitask learning for radar HRRP target recognition. IEEE Trans. Signal Process. 59(7), 3182–3196 (2011)
Feng, B., Du, L., Liu, H.W., Li, F.: Radar HRRP target recognition based on K-SVD algorithm. In: IEEE CIE International Conference on Radar, pp. 642–645 (2012)
Fielding, K.H.: Spatiotemporal pattern recognition using hidden markov models. IEEE Trans. Aerosp. Electron. Syst. 31(4), 1292–1300 (1995)
Graves, A.: Long short-term memory. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks. SCI, vol. 385, pp. 37–45. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24797-2_4
Hudson, S., Psaltis, D.: Correlation filters for aircraft identification from radar range profiles. IEEE Trans. Aerosp. Electron. Syst. 29(3), 741–748 (2002)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift, pp. 448–456 (2015)
Ji, S., Liao, X., Carin, L.: Adaptive multiaspect target classification and detection with hidden markov models. IEEE Sens. J. 5(5), 1035–1042 (2005)
Jones, G., Bhanu, B.: Recognizing occluded objects in SAR images. IEEE Trans. Aerosp. Electron. Syst. 37(1), 316–328 (2001)
Krizhevsky, A., Sutskever, I, Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)
Li, H.J., Yang, S.H.: Using range profiles as feature vectors to identify aerospace objects. IEEE Trans. Antennas Propag. 41(3), 261–268 (1993)
Liao, X., Bao, Z., Xing, M.: On the aspect sensitivity of high resolution range profiles and its reduction methods. In: The Record of the IEEE 2000 International Radar Conference, pp. 310–315 (2000)
Mikolov, T., Karafit, M., Burget, L., Cernocky, J., Khudanpur, S.: Recurrent neural network based language model. In: INTERSPEECH 2010, Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September, pp. 1045–1048 (2010)
Mitchell, R.A., Westerkamp, J.J.: Robust statistical feature based aircraft identification. IEEE Trans. Aerosp. Electron. Syst. 35(3), 1077–1094 (1999)
Nilubol, C., Pham, Q.H., Mersereau, R.M., Smith, M.J.T., Clements, M.A.: Hidden markov modelling for SAR automatic target recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 1061–1064 (1998)
Novak, L.M.: State-of-the-art of SAR automatic target recognition. In: The Record of the IEEE 2000 International Radar Conference, pp. 836–843 (2000)
O’Sullivan, J.A., Devore, M.D., Kedia, V., Miller, M.I.: SAR ATR performance using a conditionally Gaussian model. IEEE Trans. Aerosp. Electron. Syst. 37(1), 91–108 (2001)
Pei, B., Bao, Z.: Multi-aspect radar target recognition method based on scattering centers and HMMs classifiers. Acta Electronica Sinica 41(3), 1067–1074 (2003)
Runkle, P., Nguyen, L.H., Mcclellan, J.H., Carin, L.: Multi-aspect target detection for SAR imagery using hidden markov models. IEEE Trans. Geosci. Remote. Sens. 39(1), 46–55 (2001)
Szegedy, C., et al. Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Vinyals, O., Toshev, A, Bengio, S., Erhan, D.: Show and tell: a neural image caption generator, pp. 3156–3164 (2014)
Williams, R., Westerkamp, J., Gross, D., Palomino, A.: Automatic target recognition of time critical moving targets using 1D high range resolution (HRR) radar. IEEE Aerosp. Electron. Syst. Mag. 15(4), 37–43 (2000)
Xing, M., Bao, Z., Pei, B.: Properties of high-resolution range profiles. Opt. Eng. 41(2), 493–504 (2002)
Da Zhang, X., Shi, Y., Bao, Z.: A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Process. 49(9), 1875–1885 (2001)
Zhu, F., Da Zhang, X., Hu, Y.F., Xie, D.: Nonstationary hidden Markov models for multiaspect discriminative feature extraction from radar targets. IEEE Trans. Signal Process. 55(5), 2203–2214 (2007)
Zyweck, A., Bogner, R.E.: Radar target classification of commercial aircraft. IEEE Trans. Aerosp. Electron. Syst. 32(2), 598–606 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Shen, M., Chen, B. (2018). Radar HRRP Target Recognition with Recurrent Convolutional Neural Networks. In: Peng, Y., Yu, K., Lu, J., Jiang, X. (eds) Intelligence Science and Big Data Engineering. IScIDE 2018. Lecture Notes in Computer Science(), vol 11266. Springer, Cham. https://doi.org/10.1007/978-3-030-02698-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-02698-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02697-4
Online ISBN: 978-3-030-02698-1
eBook Packages: Computer ScienceComputer Science (R0)