Abstract
A simple yet practical multi-label learning method, called label powerset (LP), considers each different combination of labels that appear in the training set as a different class value of a single-label classification task. However, because those classes source from multiple labels, there may be some inherent relationships among them. To tackle this challenge, we propose a novel model which aims to co-learn binary classifiers, by combining the training of binary classifiers and the characterizing the relationship among them into a unified objective function. In addition, we develop an alternating optimization algorithm to solve the proposed problem. Extensive experimental results on various kinds of datasets well demonstrate the effectiveness of the proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ueda, N., Saito, K.: Parametric mixture models for multi-labeled text. In: International Conference on Neural Information Processing Systems, pp. 737–744 (2002)
Zhang, D., Islam, M.M., Lu, G.: A review on automatic image annotation techniques. Pattern Recogn. 45(1), 346–362 (2012)
Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Mei, T., Zhang, H.J.: Correlative multi-label video annotation. In: ACM International Conference on Multimedia, pp. 17–26 (2007)
Jiang, W., Cohen, A., Raś, Z.W.: Polyphonic music information retrieval based on multi-label cascade classification system. ProQuest LLC 17(5–6), 452–470 (2009)
Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5
Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)
Spyromitros, E., Tsoumakas, G., Vlahavas, I.: An empirical study of lazy multilabel classification algorithms. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 401–406. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87881-0_40
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)
Tsoumakas, G., Katakis, I., Taniar, D.: Multi-label classification: an overview. Int. J. Data Wareh. Min. 3(3), 1–13 (2009)
Poladi, I., Ishwardas, H.: Review paper on error correcting output code based on multiclass classification. Int. J. Sci. Res. 2(2), 134–136 (2012)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Conference on Advances in Neural Information Processing Systems, pp. 507–513 (1998)
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2(1), 263–286 (1995)
Pujol, O., Radeva, P., Vitria, J.: Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 1007 (2006)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)
Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)
Singer, Y., Schapire, R.E.: BoosTexter: a boosting-based system for text categorization. In: Machine Learning, pp. 135–168 (2000)
Comité, F.D., Gilleron, R., Tommasi, M.: Learning multi-label alternating decision trees from texts and data. In: International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 35–49 (2003)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: International Conference on Neural Information Processing Systems: Natural and Synthetic, pp. 681–687 (2001)
Hariharan, B., Zelnik-Manor, L., Vishwanathan, S.V.N., Varma, M.: Large scale max-margin multi-label classification with priors. In: International Conference on Machine Learning, pp. 423–430 (2010)
Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
Zhang, M.L.: ML-RBF: RBF neural networks for multi-label learning. Neural Process. Lett. 29, 61 (2009)
Veloso, A., Meira, W., Gonçalves, M., Zaki, M.: Multi-label lazy associative classification. Knowl. Discov. Databases PKDD 181(13), 605–612 (2007)
Liu, X.Y., Li, Q.Q., Zhou, Z.H.: Learning imbalanced multi-class data with optimal dichotomy weights. In: IEEE International Conference on Data Mining, pp. 478–487 (2014)
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. Blood 90(9), 3438–3443 (2008)
Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: IEEE International Conference on TOOLS with Artificial Intelligence, pp. 469–476 (2013)
Katakis, G.T., Ioannis, V.I.: Multilabel text classification for automated tag suggestion. In: Proceedings of the ECML/PKDD Discovery Challenge, vol. 18 (2008)
Acknowledgments
This work was supported by NSF China (No. 61473302, 61503396).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Shan, J., Hou, C., Zhuge, W., Yi, D. (2018). Co-learning Binary Classifiers for LP-Based Multi-label Classification. In: Peng, Y., Yu, K., Lu, J., Jiang, X. (eds) Intelligence Science and Big Data Engineering. IScIDE 2018. Lecture Notes in Computer Science(), vol 11266. Springer, Cham. https://doi.org/10.1007/978-3-030-02698-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-02698-1_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02697-4
Online ISBN: 978-3-030-02698-1
eBook Packages: Computer ScienceComputer Science (R0)