Abstract
Service Oriented Architecture starts with the concept of web services, which give birth to an application of web service composition that selects and combines web services to accommodate users’ complex requirements. These requirements often cover functional parts (i.e., semantic matchmaking of services’ inputs and outputs) and non-functional parts (i.e., Quality of Service). Service composition is an NP-hard problem. Evolutionary Computation (EC) techniques have been successfully proposed for finding solutions with near-optimal Quality of Semantic Matchmaking (QoSM) and/or Quality of Service (QoS) using knowledge of promising solutions. Estimation of Distribution Algorithm (EDA) has been applied to semi-automated QoS-aware service composition, since it is capable of extracting knowledge of good solutions into a explicit probabilistic model. However, existing works do not support extracting knowledge for fully automated service composition that does not obeying a given workflow. In this paper, we proposed an EDA-based fully automated service composition approach to jointly optimize Quality of Semantic Matchmaking and Quality of Services. This approach is compared with a PSO-based approach that was recently proposed to solve the same problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbassi, I., Graiet, M., Gaaloul, W., Hadj-Alouane, N.B.: Genetic-based approach for ATS and SLA-aware web services composition. In: Wang, J., et al. (eds.) WISE 2015. LNCS, vol. 9418, pp. 369–383. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26190-4_25
Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Prog. Artif. Intell. 1(1), 103–117 (2012)
Curbera, F., Nagy, W., Weerawarana, S.: Web services: why and how. In: Workshop on Object-Oriented Web Services-OOPSLA, vol. 2001 (2001)
Lécué, F.: Optimizing QoS-aware semantic web service composition. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 375–391. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_24
Lécué, F., Delteil, A., Léger, A.: Optimizing causal link based web service composition. In: ECAI, pp. 45–49 (2008)
Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoperability of service clouds. Serv. Oriented Comput. Appl. 6(3), 189–205 (2012)
Ma, H., Wang, A., Zhang, M.: A hybrid approach using genetic programming and greedy search for QoS-aware web service composition. In: Hameurlain, A., Küng, J., Wagner, R., Decker, H., Lhotska, L., Link, S. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XVIII. LNCS, vol. 8980, pp. 180–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46485-4_7
Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48005-6_26
Peng, S., Wang, H., Yu, Q.: Estimation of distribution with restricted Boltzmann machine for adaptive service composition. In: IEEE ICWS, pp. 114–121 (2017)
Pichanaharee, K., Senivongse, T.: QoS-based service provision schemes and plan durability in service composition. In: Meier, R., Terzis, S. (eds.) DAIS 2008. LNCS, vol. 5053, pp. 58–71. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68642-2_5
Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1_5
Rodriguez-Mier, P., Mucientes, M., Lama, M., Couto, M.I.: Composition of web services through genetic programming. Evol. Intell. 3(3–4), 171–186 (2010)
Shet, K., Acharya, U.D., et al.: A new similarity measure for taxonomy based on edge counting. arXiv preprint arXiv:1211.4709 (2012)
Sawczuk da Silva, A., Ma, H., Zhang, M.: GraphEvol: a graph evolution technique for web service composition. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 134–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22852-5_12
Sawczuk da Silva, A., Ma, H., Zhang, M.: Genetic programming for QoS-aware web service composition and selection. Soft Comput. 20, 1–17 (2016)
Sawczuk da Silva, A., Mei, Y., Ma, H., Zhang, M.: Particle swarm optimisation with sequence-like indirect representation for web service composition. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 202–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_14
Tong, H., Cao, J., Zhang, S., Li, M.: A distributed algorithm for web service composition based on service agent model. IEEE Trans. Parallel Distrib. Syst. 22(12), 2008–2021 (2011)
Tsutsui, S.: A comparative study of sampling methods in node histogram models with probabilistic model-building genetic algorithms. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2006, vol. 4, pp. 3132–3137. IEEE (2006)
Wang, C., Ma, H., Chen, A., Hartmann, S.: Comprehensive quality-aware automated semantic web service composition. In: Peng, W., Alahakoon, D., Li, X. (eds.) AI 2017. LNCS, vol. 10400, pp. 195–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63004-5_16
Wang, C., Ma, H., Chen, A., Hartmann, S.: GP-based approach to comprehensive quality-aware automated semantic web service composition. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 170–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_15
Wang, C., Ma, H., Chen, G.: EDA-based approach to comprehensive quality-aware automated semantic web service composition. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 147–148. ACM (2018)
Wang, J., Tang, K., Lozano, J.A., Yao, X.: Estimation of the distribution algorithm with a stochastic local search for uncertain capacitated arc routing problems. IEEE Trans. Evol. Comput. 20(1), 96–109 (2016)
Wang, S.Y., Wang, L.: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem. IEEE Trans. Syst. 46(1), 139–149 (2016)
Yu, Y., Ma, H., Zhang, M.: An adaptive genetic programming approach to QoS-aware web services composition. In: IEEE CEC, pp. 1740–1747 (2013)
Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web services composition. In: Proceedings of the 12th International Conference on World Wide Web, pp. 411–421. ACM (2003)
Acknowledgments
This work is partially supported by the New Zealand Marsden Fund with the contract numbers (VUW1510), administrated by the Royal Society of New Zealand.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, C., Ma, H., Chen, A., Hartmann, S. (2018). Knowledge-Driven Automated Web Service Composition—An EDA-Based Approach. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11234. Springer, Cham. https://doi.org/10.1007/978-3-030-02925-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-02925-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02924-1
Online ISBN: 978-3-030-02925-8
eBook Packages: Computer ScienceComputer Science (R0)