Abstract
Controlling advanced robotic systems with brain signals promises substantial improvements in health care, for example, to restore intuitive control of hand movements after severe stroke or spinal cord injuries (SCI). However, such integrated, brain- or neural-controlled robotic systems have yet to enter broader clinical use or daily life environments. The main challenge to integrate such systems in everyday life environments relates to the reliability of brain-control, particularly when brain signals are recorded non-invasively. Using a non-invasive, hybrid EEG-EOG-based brain/neural hand exoskeleton (B/NHE), we demonstrate full restoration of activities of daily living (ADL), such as eating and drinking, across six paraplegic individuals (five males, 30 ± 14 years) outside the laboratory. In a second set of experiments, we show that even whole-arm exoskeleton control is feasible and safe by combining hybrid brain/neural control with vision-guided and context-sensitive autonomous robotics. Given that recent studies indicate neurological recovery after chronic stroke or SCI when brain-controlled assistive technology is repeatedly used for 1–12 months, we suggest that combining an assistive and rehabilitative approach may further promote brain-machine interface (BMI) technology as a standard therapy option after stroke and SCI. In such scenario, brain/neural-assistive technology would not only have an immediate impact on the quality of life and autonomy of individuals with brain or spinal cord lesions but would also foster neurological recovery by stimulating functional and structural neuroplasticity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
N. Birbaumer, L.G. Cohen, Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579, 621–636 (2007)
G.L. Birbeck, M.G. Hanna, R.C. Griggs, Global opportunities and challenges for clinical neuroscience. JAMA 311, 1609–1610 (2014)
D. Broetz, C. Braun, C. Weber, S.R. Soekadar, A. Caria, N. Birbaumer, Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabilitation and Neural Repair 24, 674–679 (2010)
E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S.R. Soekadar, A. Fourkas, N. Birbaumer, Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)
A. Caria, C. Weber, D. Brötz, A. Ramos, L.F. Ticini, A. Gharabaghi, C. Braun, N. Birbaumer, Chronic stroke recovery after combined BCI training and physiotherapy: a case report. J. Psychophysiol. 48, 578–582 (2011)
M.A. Cervera, S.R. Soekadar, J. Ushiba, J.D.R. Millán, M. Liu, N. Birbaumer, G. Garipelli, Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5, 651–663 (2018)
J. Clausen, E. Fetz, J. Donoghue, J. Ushiba, U. Spörhase, J. Chandler, N. Birbaumer, S.R. Soekadar, Help, hope and hype: ethical dimensions of neuroprosthetics. Science 356, 1338–1339 (2017)
S. Crea, M. Nann, E. Trigili, F. Cordella, A. Baldoni, F.J. Badesa, J.M. Catalan, L. Zollo, N. Vitiello, N.G. Aracil, S.R. Soekadar, Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Sci. Rep. 8, 10823 (2018)
J.L. Collinger, B. Wodlinger, J.E. Downey, W. Wang, E.C. Tyler-Kabara, D.J. Weber, A.J. McMorland, M. Velliste, M.L. Boninger, A.B. Schwartz, High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013)
B.H. Dobkin, Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 579, 637–642 (2007)
A.R. Donati, S. Shokur, E. Morya, D.S. Campos, R.C. Moioli, C.M. Gitti, P.B. Augusto, S. Tripodi, C.G. Pires, G.A. Pereira, F.L. Brasil, S. Gallo, A.A. Lin, A.K. Takigami, M.A. Aratanha, S. Joshi, H. Bleuler, G. Cheng, A. Rudolph, M.A. Nicolelis, Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci. Rep. 6, 30383 (2016)
V.L. Feigin, M.H. Forouzanfar, R. Krishnamurthi, G.A. Mensah, M. Connor, D.A. Bennett et al., Global and regional burden of stroke in 1990–2010: findings from the global burden of disease study 2010. Lancet 382, 1–12 (2013)
L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. van der Smagt, J.P. Donoghue, Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)
M.E. Johanson, J.P. Jaramillo, C.A. Dairaghi, W.M. Murray, V.R. Hentz, Multicenter survey of the effects of rehabilitation practices on pinch force strength after tendon transfer to restore pinch in tetraplegia. Arch. Phys. Med. Rehabil. 97(6 Suppl), S105–S116 (2016)
A. Ramos-Murguialday, D. Broetz, M. Rea, L. Läer, O. Yilmaz, F.L. Brasil, G. Liberati, M.R. Curado, E. Garcia Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, S.R. Soekadar, A. Caria, L.G. Cohen, N. Birbaumer, Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2013)
K. Ruddy, J. Balsters, D. Mantini, Q. Liu, P. Kassraian-Fard, N. Enz, E. Mihelj, B. Subhash Chander, S.R. Soekadar, N. Wenderoth, Neural activity related to volitional regulation of cortical excitability. Elife 7, e40843 (2018)
S.R. Soekadar, M. Witkowski, J. Mellinger, A. Ramos Murguialday, N. Birbaumer, L.G. Cohen, ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 542–549 (2011)
S.R. Soekadar, N. Birbaumer, M.W. Slutzky, L.G. Cohen, Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015)
S.R. Soekadar, M. Witkowski, N. Vitiello, N. Birbaumer, An EEG/EOG-based hybrid brain- neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomed. Tech. 60, 199–205 (2015)
S.R. Soekadar, L.G. Cohen, N. Birbaumer, Clinical brain-machine interfaces, in Plasticity of cognition in neurologic disorders, ed. by J. Tracy, B. Hampstead, K. Sathian (Oxford University Press, New York, 2015), pp. 347–362
S.R. Soekadar, M. Witkowski, C. Gómez, E. Opisso, J. Medina, M. Cortese, M. Cempini, M.C. Carozza, L.G. Cohen, N. Birbaumer, N. Vitiello, Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1, eaag3296 (2016)
S. Toyama, K. Takano, K. Kansaku, A nonadhesive solid-gel electrode for a non-invasive brain–machine interface. Front. Neurol. 3, 114 (2012)
H. Wang, Y. Li, J. Long, T. Yu, Z. Gu, An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface. Cognit. Neurodyn. 8, 399–409 (2014)
WHO: World health report, Geneva, World Health Organization (2012)
M. Witkowski, M. Cortese, M. Cempini, J. Mellinger, N. Vitiello, S.R. Soekadar, Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). J. Neuroeng. Rehabil. 11, 165 (2014)
S.L. Wolf, C.J. Winstein, J.P. Miller et al., The EXCITE investigators. Effect of constraint-induced movement therapy on upper extremity function 3–9 months after stroke: the EXCITE randomized clinical trial. JAMA 296, 2095–2104 (2006)
Acknowledgements
This chapter and the presented studies were supported by the European Commission under the project AIDE (G.A. no: 645322), the European Research Council (ERC) under the project NGBMI (759370), and the Baden-Württemberg Stiftung (NEU007/1). SRS received special support by the Brain & Behavior Research Foundation as 2017 NARSAD Young Investigator Grant recipient and P&S Fund Investigator.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Soekadar, S.R. et al. (2019). Restoration of Finger and Arm Movements Using Hybrid Brain/Neural Assistive Technology in Everyday Life Environments. In: Guger, C., Mrachacz-Kersting, N., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-05668-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-05668-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05667-4
Online ISBN: 978-3-030-05668-1
eBook Packages: Computer ScienceComputer Science (R0)