Skip to main content

Covering and Packing of Triangles Intersecting a Straight Line

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11394))

Included in the following conference series:

Abstract

We study the four geometric optimization problems: , , , and with (a triangle is a right-triangle whose base is parallel to the x-axis, perpendicular is parallel to the y-axis, and the slope of the hypotenuse is \(-1\)). The input triangles are constrained to be intersecting a . The straight line can either be a or an line (a line whose slope is \(-1\)). A right-triangle is said to be a , if the length of both its base and perpendicular is \(\lambda \). For \(1\)-right-triangles where the triangles intersect an inclined line, we prove that the set cover and hitting set problems are \(\mathsf {NP}\)-hard, whereas the piercing set and independent set problems are in \(\mathsf {P}\). The same results hold for \(1\)-right-triangles where the triangles are intersecting a horizontal line instead of an inclined line. We prove that the piercing set and independent set problems with right-triangles intersecting an inclined line are \(\mathsf {NP}\)-hard. Finally, we give an \(n^{O(\lceil \log c\rceil +1)}\) time exact algorithm for the independent set problem with \(\lambda \)-right-triangles intersecting a straight line such that \(\lambda \) takes more than one value from [1, c], for some integer c. We also present \(O(n^2)\) time dynamic programming algorithms for the independent set problem with \(1\)-right-triangles where the triangles intersect a horizontal line and an inclined line.

S. Pandit—Partially supported by the Indo-US Science & Technology Forum (IUSSTF) under the SERB Indo-US Postdoctoral Fellowship scheme with grant number 2017/94, Department of Science and Technology, Government of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Catanzaro, D., et al.: Max point-tolerance graphs. Discret. Appl. Math. 216, 84–97 (2017)

    Article  MathSciNet  Google Scholar 

  2. Chepoi, V., Felsner, S.: Approximating hitting sets of axis-parallel rectangles intersecting a monotone curve. Comput. Geom. 46(9), 1036–1041 (2013)

    Article  MathSciNet  Google Scholar 

  3. Correa, J., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and hitting sets of rectangles intersecting a diagonal line: algorithms and complexity. Discret. Comput. Geom. 53(2), 344–365 (2015)

    Article  MathSciNet  Google Scholar 

  4. Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms for maximum independent set of a unit disk graph. Inf. Process. Lett. 115(3), 439–446 (2015)

    Article  MathSciNet  Google Scholar 

  5. Fraser, R., López-Ortiz, A.: The within-strip discrete unit disk cover problem. Theor. Comput. Sci. 674, 99–115 (2017)

    Article  MathSciNet  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  7. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discret. Math. 5(3), 422–427 (1992)

    Article  MathSciNet  Google Scholar 

  8. Kratochvíl, J., Nešetřil, J.: INDEPENDENT SET and CLIQUE problems in intersection-defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae 031(1), 85–93 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  Google Scholar 

  10. Lubiw, A.: A weighted min-max relation for intervals. J. Comb. Theory Ser. B 53(2), 151–172 (1991)

    Article  MathSciNet  Google Scholar 

  11. Mudgal, A., Pandit, S.: Covering, hitting, piercing and packing rectangles intersecting an inclined line. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 126–137. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_10

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supantha Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandit, S. (2019). Covering and Packing of Triangles Intersecting a Straight Line. In: Pal, S., Vijayakumar, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2019. Lecture Notes in Computer Science(), vol 11394. Springer, Cham. https://doi.org/10.1007/978-3-030-11509-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11509-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11508-1

  • Online ISBN: 978-3-030-11509-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy