Skip to main content

Maize Insects Classification Through Endoscopic Video Analysis

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11489))

Included in the following conference series:

  • 2681 Accesses

Abstract

An early identification of insects in grains is of paramount importance to avoid losses. Instead of sampling and visual/laboratory analysis of grains, we propose carrying out the insect identification task automatically, using endoscopic video analysis methods. As the classification process of moving objects in video relies heavily on precise segmentation of moving objects, we propose a new background subtraction method and comparing their results with the main methods of the literature according to a comprehensive review. The background subtraction method relies on a binarization process that uses two thresholds: a global and a local threshold. The binarized results are combined by adding details of the object obtained by the local threshold in the result to the global threshold. Experimental results performed through visual analysis of the segmentation results and using a SVM classifier suggest that the proposed segmentation method produces more accurate results than the state-of-art background subtraction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/andrewssobral/bgslibrary.

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  2. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8595–8598 (2013)

    Google Scholar 

  3. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  4. Luo, S., Yang, H., Wang, C., Che, X., Meinel, C.: Action recognition in surveillance video using ConvNets and motion history image. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 187–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_23

    Chapter  Google Scholar 

  5. Wang, C., Yang, H., Meinel, C.: Exploring multimodal video representation for action recognition. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1924–1931 (2016)

    Google Scholar 

  6. Luo, S., Yang, H., Wang, C., Che, X., Meinel, C.: Real-time action recognition in surveillance videos using ConvNets. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 529–537. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46675-0_58

    Chapter  Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  9. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015)

    Article  Google Scholar 

  10. Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 122, 4–21 (2014)

    Article  Google Scholar 

  11. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)

    Article  Google Scholar 

  12. Kuhl, F.P.: Elliptic fourier features of a closed contour. Comput. Graph. Image Process. 18, 1982 (1982)

    Article  Google Scholar 

  13. Calderara, S., Melli, R., Prati, A., Cucchiara, R.: Reliable background suppression for complex scenes. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks, Santa Barbara, CA, USA, pp. 211–214 (2006)

    Google Scholar 

  14. de Geus, A.R., Batista, M.A., dos Santos Filho, T.A., da Silva, S.F.: Segmentação de classifição de insetos em milho à granel por meio de análise de vídeo. In: Simpósio Brasileiro de Automação Inteligente, Natal, RN, BRA, pp. 1–6 (2015)

    Google Scholar 

  15. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  16. El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy integral for moving object detection. In: IEEE International Conference on Fuzzy Systems, Hong Kong, pp. 1729–1736 (2008)

    Google Scholar 

  17. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  18. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) European Workshop on Advanced Video Based Surveillance Systems, pp. 135–144. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0913-4_11

    Chapter  Google Scholar 

  19. El Baf, F., Bouwmans, T., Vachon, B.: Type-2 fuzzy mixture of Gaussians model: application to background modeling. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 772–781. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89639-5_74

    Chapter  Google Scholar 

  20. El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 60–65 (2009)

    Google Scholar 

  21. Bouwmans, T., El Baf, F.: Modeling of dynamic backgrounds by type-2 fuzzy gaussians mixture models. MASAUM J. Basic Appl. Sci. 1(2), 265–276 (2010)

    Google Scholar 

  22. Yao, J., Odobez, J.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, pp. 1–8 (2007)

    Google Scholar 

  23. Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

    Article  Google Scholar 

  24. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(07), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors thank the Brazilian agencies CNPq, CAPES, FAPEG and FAPEMIG for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André R. de Geus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Geus, A.R., Batista, M.A., Rabelo, M.N., Barcelos, C.Z., da Silva, S.F. (2019). Maize Insects Classification Through Endoscopic Video Analysis. In: Meurs, MJ., Rudzicz, F. (eds) Advances in Artificial Intelligence. Canadian AI 2019. Lecture Notes in Computer Science(), vol 11489. Springer, Cham. https://doi.org/10.1007/978-3-030-18305-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18305-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18304-2

  • Online ISBN: 978-3-030-18305-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy