Abstract
An early identification of insects in grains is of paramount importance to avoid losses. Instead of sampling and visual/laboratory analysis of grains, we propose carrying out the insect identification task automatically, using endoscopic video analysis methods. As the classification process of moving objects in video relies heavily on precise segmentation of moving objects, we propose a new background subtraction method and comparing their results with the main methods of the literature according to a comprehensive review. The background subtraction method relies on a binarization process that uses two thresholds: a global and a local threshold. The binarized results are combined by adding details of the object obtained by the local threshold in the result to the global threshold. Experimental results performed through visual analysis of the segmentation results and using a SVM classifier suggest that the proposed segmentation method produces more accurate results than the state-of-art background subtraction methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
Le, Q.V.: Building high-level features using large scale unsupervised learning. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8595–8598 (2013)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Luo, S., Yang, H., Wang, C., Che, X., Meinel, C.: Action recognition in surveillance video using ConvNets and motion history image. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 187–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_23
Wang, C., Yang, H., Meinel, C.: Exploring multimodal video representation for action recognition. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1924–1931 (2016)
Luo, S., Yang, H., Wang, C., Che, X., Meinel, C.: Real-time action recognition in surveillance videos using ConvNets. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 529–537. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46675-0_58
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)
Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015)
Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 122, 4–21 (2014)
Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)
Kuhl, F.P.: Elliptic fourier features of a closed contour. Comput. Graph. Image Process. 18, 1982 (1982)
Calderara, S., Melli, R., Prati, A., Cucchiara, R.: Reliable background suppression for complex scenes. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks, Santa Barbara, CA, USA, pp. 211–214 (2006)
de Geus, A.R., Batista, M.A., dos Santos Filho, T.A., da Silva, S.F.: Segmentação de classifição de insetos em milho à granel por meio de análise de vídeo. In: Simpósio Brasileiro de Automação Inteligente, Natal, RN, BRA, pp. 1–6 (2015)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy integral for moving object detection. In: IEEE International Conference on Fuzzy Systems, Hong Kong, pp. 1729–1736 (2008)
Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)
KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) European Workshop on Advanced Video Based Surveillance Systems, pp. 135–144. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0913-4_11
El Baf, F., Bouwmans, T., Vachon, B.: Type-2 fuzzy mixture of Gaussians model: application to background modeling. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 772–781. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89639-5_74
El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 60–65 (2009)
Bouwmans, T., El Baf, F.: Modeling of dynamic backgrounds by type-2 fuzzy gaussians mixture models. MASAUM J. Basic Appl. Sci. 1(2), 265–276 (2010)
Yao, J., Odobez, J.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, pp. 1–8 (2007)
Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)
Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(07), 1168–1177 (2008)
Acknowledgment
The authors thank the Brazilian agencies CNPq, CAPES, FAPEG and FAPEMIG for the financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
de Geus, A.R., Batista, M.A., Rabelo, M.N., Barcelos, C.Z., da Silva, S.F. (2019). Maize Insects Classification Through Endoscopic Video Analysis. In: Meurs, MJ., Rudzicz, F. (eds) Advances in Artificial Intelligence. Canadian AI 2019. Lecture Notes in Computer Science(), vol 11489. Springer, Cham. https://doi.org/10.1007/978-3-030-18305-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-18305-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18304-2
Online ISBN: 978-3-030-18305-9
eBook Packages: Computer ScienceComputer Science (R0)