Skip to main content

Privacy as a Service: Publishing Data and Models

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11448))

Included in the following conference series:

Abstract

The main obstacle to the development of sustainable and productive ecosystems leveraging data is the unavailability of robust, reliable and convenient privacy management tools and services. We propose to demonstrate our Privacy-as-a-Service system and Liánchéng, the Cloud system that hosts it. We consider not only the publication of data but also that of models created by parametric and non-parametric statistical machine learning algorithms. We illustrate the construction and execution of privacy preserving workflows using real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.wired.com/insights/2015/03/privacy-revolt-growing-demand-privacy-service/.

  2. 2.

    https://www.dropbox.com.

  3. 3.

    http://radar.oreilly.com/2007/02/pipes-and-filters-for-the-inte.html.

  4. 4.

    https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t.

References

  1. Minnesota population center. Integrated public use microdata series - international: Version 5.0 (2009). https://international.ipums.org

  2. Regulation (EU) 2016/679 general data protection regulation (text with EEA relevance). Official J. Eur. Union L(119), 1–88 (2016). https://eur-lex.europa.eu/eli/reg/2016/679/oj

  3. Dandekar, A., Basu, D., Bressan, S.: Differential privacy for regularised linear regression. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 483–491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-2_44

    Chapter  Google Scholar 

  4. Dandekar, A., Zen, R.A.M., Bressan, S.: A comparative study of synthetic dataset generation techniques. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 387–395. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-2_35

    Chapter  Google Scholar 

  5. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Hall, R., Rinaldo, A., Wasserman, L.: Differential privacy for functions and functional data. J. Mach. Learn. Res. 14(Feb), 703–727 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Heyrani-Nobari, G., Boucelma, O., Bressan, S.: Privacy and anonymization as a service: PASS. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 392–395. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12098-5_33

    Chapter  Google Scholar 

  8. Hundepool, A., et al.: Statistical Disclosure Control. Wiley, Chichester (2012)

    Book  Google Scholar 

  9. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: IEEE 23rd International Conference on Data Engineering, 2007. ICDE 2007, pp. 106–115. IEEE (2007)

    Google Scholar 

  10. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3 (2007)

    Article  Google Scholar 

  11. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  12. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  13. Smola, A.J., Schölkopf, B.: Learning with Kernels, vol. 4. Citeseer (1998)

    Google Scholar 

  14. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  15. Zare-Mirakabad, M.-R., Jantan, A., Bressan, S.: Privacy risk diagnosis: mining l-diversity. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DASFAA 2009. LNCS, vol. 5667, pp. 216–230. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04205-8_19

    Chapter  Google Scholar 

  16. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional mechanism: regression analysis under differential privacy. Proc. VLDB Endow. 5(11), 1364–1375 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This project is supported by the National Research Foundation, Singapore Prime Minister’s Office, under its Campus for Research Excellence and Technological Enterprise (CREATE) programme and under its Corporate Laboratory@University Scheme between National University of Singapore and Singapore Telecommunications Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dandekar, A., Basu, D., Kister, T., Poh, G.S., Xu, J., Bressan, S. (2019). Privacy as a Service: Publishing Data and Models. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11448. Springer, Cham. https://doi.org/10.1007/978-3-030-18590-9_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18590-9_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18589-3

  • Online ISBN: 978-3-030-18590-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy