Skip to main content

Generation of Elevation Maps for Planning and Navigation of Vehicles in Rough Natural Terrain

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 980))

Included in the following conference series:

  • 2099 Accesses

Abstract

We propose a system, which generates a precise elevation map of natural rough terrain. It uses basic sensors such as LiDAR and Stereo camera to generate point clouds. Based on the requirements of high precision, specific techniques are integrated to receive adequate maps in real-time. The presented methodology allows an easy extension of existing maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar, N.V.: Integration of inertial navigation system and global positioning system using Kalman filtering. Aerospace Engineering, Department of Aerospace Engineering Indian Institute of Technology, Bombay, Mumbai (2004)

    Google Scholar 

  2. Nemra, A., Aouf, N.: Robust INS/GPS sensor fusion for UAV localization using SDRE nonlinear filtering. IEEE Sens. J. 10(4), 789–798 (2010). https://doi.org/10.1109/JSEN.2009.2034730

    Article  Google Scholar 

  3. Morf, M., Kailath, T.: Square-root algorithms for least-squares estimation. IEEE Trans. Autom. Control 20(4), 487–497 (1975). https://doi.org/10.1109/TAC.1975.1100994

    Article  MathSciNet  MATH  Google Scholar 

  4. Van Der Merwe, R., Wan, E.A.: The square-root unscented Kalman filter for state and parameter-estimation. In: 2001 Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2001), vol. 6. IEEE (2001)

    Google Scholar 

  5. Hinzmann, T., Schönberger, J.L., Pollefeys, M., Siegwart, R.: Mapping on the fly: real-time 3D dense reconstruction, digital surface map and incremental orthomosaic generation for unmanned aerial vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol. 5. Springer, Cham (2018)

    Chapter  Google Scholar 

  6. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26(2), 71–78 (1992). https://doi.org/10.1145/142920.134011

    Article  Google Scholar 

  7. Turan, M., Pilavci, Y.Y., Ganiyusufoglu, I., et al.: Machine Vision and Applications, vol. 29, p. 345 (2018). https://doi.org/10.1007/s00138-017-0905-8

    Article  Google Scholar 

  8. Hamzah, R.A., et al.: Improvement of stereo matching algorithm for 3D surface reconstruction. Signal Process. Image Commun. 65, 165–172 (2018)

    Article  Google Scholar 

  9. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. IEEE (2006)

    Google Scholar 

  10. Fan, R., Ai, X., Dahnoun, N.: Road surface 3D reconstruction basedon dense subpixel disparity map estimation. IEEE Trans. Image Process. 27(6), 3025–3035 (2018). https://doi.org/10.1109/TIP.2018.2808770

    Article  MathSciNet  MATH  Google Scholar 

  11. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  12. Gálvez-López, D., Tardós, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)

    Article  Google Scholar 

  13. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannan Ejaz Keen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keen, H.E., Berns, K. (2020). Generation of Elevation Maps for Planning and Navigation of Vehicles in Rough Natural Terrain. In: Berns, K., Görges, D. (eds) Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980. Springer, Cham. https://doi.org/10.1007/978-3-030-19648-6_56

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy