Skip to main content

A Multi-agent System for Recommending Fire Evacuation Routes in Buildings, Based on Context and IoT

  • Conference paper
Highlights of Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection (PAAMS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1047))

  • 1114 Accesses

Abstract

The herein proposed research project brings together the area of the multi-agent recommender systems and the IoT and aims to study the extent to which a context-based multi-agent recommender system can contribute to improving efficiency in the evacuation of buildings under a fire emergency, recommending the most adequate and efficient evacuation routes in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wooldridge, M.: An Introduction to Multiagent Systems, 2nd edn. Wiley, Hoboken (2009). ISBN-10: 0470519460 ISBN-13: 978-0470519462

    Google Scholar 

  2. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296 (2000)

    Article  Google Scholar 

  3. Weiss, G.: Multiagent Systems, 2nd edn. The MIT Press, Cambridge (2013)

    Google Scholar 

  4. Morais, A.J., Oliveira, E., Jorge, A.M.: A multi-agent recommender system. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 281–288. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28765-7_33

    Chapter  Google Scholar 

  5. Neto, J., Morais, A.J.: Multi-agent web recommendations. In: Omatu, S., Bersini, H., Corchado, J.M., Rodríguez, S., Pawlewski, P., Bucciarelli, E. (eds.) Distributed Computing and Artificial Intelligence, 11th International Conference. AISC, vol. 290, pp. 235–242. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07593-8_28

    Chapter  Google Scholar 

  6. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction, vol. 40 (2011)

    Google Scholar 

  7. Yao, L., Sheng, Q.Z., Ngu, A.H.H., Ashman, H., Li, X.: Exploring recommendations in internet of things. In: Proceedings of 37th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2014, pp. 855–858 (2014)

    Google Scholar 

  8. García-Magariño, I.: Practical multi-agent system application for simulation of tourists in Madrid routes with INGENIAS. In: Demazeau, Y., Zambonelli, F., Corchado, J.M., Bajo, J. (eds.) PAAMS 2014. LNCS (LNAI), vol. 8473, pp. 122–133. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07551-8_11

    Chapter  Google Scholar 

  9. Di Martino, S., Rossi, S.: An architecture for a mobility recommender system in smart cities. Procedia Comput. Sci. 98, 425–430 (2016)

    Article  Google Scholar 

  10. Tu, M., Chang, Y.-K., Chen, Y.-T.: A context-aware recommender system framework for IoT based interactive digital signage in urban space. In: Proceedings of the Second International Conference on IoT in Urban Space, pp. 39–42 (2016)

    Google Scholar 

  11. Cha, S., Ruiz, M.P., Wachowicz, M., Tran, L.H., Cao, H., Maduako, I.: The role of an IoT platform in the design of real-time recommender systems. In: 2016 IEEE 3rd World Forum Internet Things, WF-IoT 2016, pp. 448–453 (2017)

    Google Scholar 

  12. Tan, L., Hu, M., Lin, H.: Agent-based simulation of building evacuation: combining human behavior with predictable spatial accessibility in a fire emergency. Inf. Sci. (NY) 295, 53–66 (2015)

    Article  MathSciNet  Google Scholar 

  13. Weifang, Z., Qiang, C.: Implementation of intelligent fire evacuation route based on internet of things. In: 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 934–938 (2015)

    Google Scholar 

  14. Lujak, M., Giordani, S., Ossowski, S.: An architecture for safe evacuation route recommendation in smart spaces. In: CEUR Workshop Proceedings, vol. 1678 (2016)

    Google Scholar 

  15. Lujak, M., Ossowski, S.: Evacuation route optimization architecture considering human factor. AI Commun. 30(1), 53–66 (2017)

    Article  MathSciNet  Google Scholar 

  16. Li, J.J., Zhu, H.Y.: A risk-based model of evacuation route optimization under fire. Procedia Eng. 211, 365–371 (2018)

    Article  Google Scholar 

  17. Miranda, J., et al.: From the internet of things to the internet of people. IEEE Internet Comput. 19(2), 40–47 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Neto, J., Morais, A.J., Gonçalves, R., Leça Coelho, A. (2019). A Multi-agent System for Recommending Fire Evacuation Routes in Buildings, Based on Context and IoT. In: De La Prieta, F., et al. Highlights of Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection. PAAMS 2019. Communications in Computer and Information Science, vol 1047. Springer, Cham. https://doi.org/10.1007/978-3-030-24299-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24299-2_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24298-5

  • Online ISBN: 978-3-030-24299-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy