Skip to main content

In-Air Imaging Sonar Sensor Network with Real-Time Processing Using GPUs

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 96))

Abstract

For autonomous navigation and robotic applications, sensing the environment correctly is crucial. Many sensing modalities for this purpose exist. In recent years, one such modality that is being used is in-air imaging sonar. It is ideal in complex environments with rough conditions such as dust or fog. However, like with most sensing modalities, to sense the full environment around the mobile platform, multiple such sensors are needed to capture the full 360-degree range. Currently the processing algorithms used to create this data are insufficient to do so for multiple sensors at a reasonably fast update rate. Furthermore, a flexible and robust framework is needed to easily implement multiple imaging sonar sensors into any setup and serve multiple application types for the data. In this paper we present a sensor network framework designed for this novel sensing modality. Furthermore, an implementation of the processing algorithm on a Graphics Processing Unit is proposed to potentially decrease the computing time to allow for real-time processing of one or more imaging sonar sensors at a sufficiently high update rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asen, J.P., Buskenes, J.I., Nilsen, C.I.C., Austeng, A., Holm, S.: Implementing Capon beamforming on a GPU for real-time cardiac ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(1), 76–85 (2014). https://doi.org/10.1109/TUFFC.2014.6689777

    Article  Google Scholar 

  2. Belloch, J.A., Ferrer, M., Gonzalez, A., Martinez-Zaldivar, F., Vidal, A.M.: Headphone-based virtual spatialization of sound with a GPU accelerator. J. Audio Eng. Soc. 61(7/8), 546–561 (2013)

    Google Scholar 

  3. Belloch, J.A., Bank, B., Savioja, L., Gonzalez, A., Valimaki, V.: Multi-channel IIR filtering of audio signals using a GPU. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp 6692–6696. IEEE (2014). https://doi.org/10.1109/ICASSP.2014.6854895

  4. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986). https://doi.org/10.1109/JRA.1986.1087032

    Article  Google Scholar 

  5. Buskenes, J.I., Åsen, J.P., Nilsen, C.I.C., Austeng, A.: Adapting the minimum variance beamformer to a graphics processing unit for active sonar imaging systems. J. Acoust. Soc. Am. 133(5), 3613–3613 (2013). https://doi.org/10.1121/1.4806739

    Article  Google Scholar 

  6. Buskenes, J.I., Asen, J.P., Nilsen, C.I.C., Austeng, A.: An optimized GPU implementation of the MVDR beamformer for active sonar imaging. IEEE J. Oceanic Eng. 40(2), 441–451 (2015). https://doi.org/10.1109/JOE.2014.2320631

    Article  Google Scholar 

  7. Griffin, D.R.: Listening in the Dark: The Acoustic Orientation of Bats and Men. Dover Publications (1974)

    Google Scholar 

  8. Kerstens R., Laurijssen, D., Schouten, G., Steckel, J.: 3D point cloud data acquisition using a synchronized in-air imaging sonar sensor network. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2019, to be published)

    Google Scholar 

  9. Kerstens, R., Laurijssen, D., Steckel, J.: eRTIS: a fully embedded real time 3D imaging sonar sensor for robotic applications. In: IEEE International Conference on Robotics and Automation (2019, to be published)

    Google Scholar 

  10. Lorente, J., Vidal, A.M., Pinero, G., Belloch, J.A.: Parallel implementations of beamforming design and filtering for microphone array applications. In: European Signal Processing Conference (2011)

    Google Scholar 

  11. Schneider, M., Schuh, F., Kellermann, W.: The generalized frequency-domain adaptive filtering algorithm implemented on a GPU for large-scale multichannel acoustic echo cancellation. In: Speech Communication, 10. ITG Symposium, VDE Verlag GmbH, p. 296 (2012)

    Google Scholar 

  12. NVIDIA: CUDA Toolkit (2019). https://docs.nvidia.com/cuda/index.html

  13. Python: GlobalInterpreterLock (2019). https://wiki.python.org/moin/GlobalInterpreterLock

  14. Schnitzler, H.U., Moss, C.F., Denzinger, A.: From spatial orientation to food acquisition in echolocating bats. Trends Ecol. Evol. 18(8), 386–394 (2003). https://doi.org/10.1016/S0169-5347(03)00185-X

    Article  Google Scholar 

  15. Steckel, J.: RTIS (2019). https://www.3dsonar.eu/

  16. Steckel, J., Peremans, H.: BatSLAM: simultaneous localization and mapping using biomimetic sonar. PLoS ONE 8(1), e54,076 (2013). https://doi.org/10.1371/journal.pone.0054076

  17. Steckel, J., Peremans, H.: Acoustic flow-based control of a mobile platform using a 3D sonar sensor. IEEE Sens. J. 17(10), 3131–3141 (2017). https://doi.org/10.1109/JSEN.2017.2688476

    Article  Google Scholar 

  18. Steckel, J., Boen, A., Peremans, H.: Broadband 3-D sonar system using a sparse array for indoor navigation. IEEE Trans. Rob. 29(1), 161–171 (2013). https://doi.org/10.1109/TRO.2012.2221313

    Article  Google Scholar 

  19. Van Trees, H.L.: Optimum Array Processing. Wiley, New York (2002). https://doi.org/10.1002/0471221104

  20. Vanneste, S., de Hoog, J., Huybrechts, T., Bosmans, S., Sharif, M., Mercelis, S., Hellinckx, P.: Distributed uniform streaming framework: towards an elastic fog computing platform for event stream processing. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 426–436 (2018). https://doi.org/10.1007/978-3-030-02607-339

  21. Garage, W.: Stanford Artificial Intelligence Laboratory. ROS.org (2019). http://www.ros.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jansen, W., Laurijssen, D., Kerstens, R., Daems, W., Steckel, J. (2020). In-Air Imaging Sonar Sensor Network with Real-Time Processing Using GPUs. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2019. Lecture Notes in Networks and Systems, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-33509-0_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33509-0_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33508-3

  • Online ISBN: 978-3-030-33509-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy