Abstract
For autonomous navigation and robotic applications, sensing the environment correctly is crucial. Many sensing modalities for this purpose exist. In recent years, one such modality that is being used is in-air imaging sonar. It is ideal in complex environments with rough conditions such as dust or fog. However, like with most sensing modalities, to sense the full environment around the mobile platform, multiple such sensors are needed to capture the full 360-degree range. Currently the processing algorithms used to create this data are insufficient to do so for multiple sensors at a reasonably fast update rate. Furthermore, a flexible and robust framework is needed to easily implement multiple imaging sonar sensors into any setup and serve multiple application types for the data. In this paper we present a sensor network framework designed for this novel sensing modality. Furthermore, an implementation of the processing algorithm on a Graphics Processing Unit is proposed to potentially decrease the computing time to allow for real-time processing of one or more imaging sonar sensors at a sufficiently high update rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asen, J.P., Buskenes, J.I., Nilsen, C.I.C., Austeng, A., Holm, S.: Implementing Capon beamforming on a GPU for real-time cardiac ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(1), 76–85 (2014). https://doi.org/10.1109/TUFFC.2014.6689777
Belloch, J.A., Ferrer, M., Gonzalez, A., Martinez-Zaldivar, F., Vidal, A.M.: Headphone-based virtual spatialization of sound with a GPU accelerator. J. Audio Eng. Soc. 61(7/8), 546–561 (2013)
Belloch, J.A., Bank, B., Savioja, L., Gonzalez, A., Valimaki, V.: Multi-channel IIR filtering of audio signals using a GPU. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp 6692–6696. IEEE (2014). https://doi.org/10.1109/ICASSP.2014.6854895
Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986). https://doi.org/10.1109/JRA.1986.1087032
Buskenes, J.I., Åsen, J.P., Nilsen, C.I.C., Austeng, A.: Adapting the minimum variance beamformer to a graphics processing unit for active sonar imaging systems. J. Acoust. Soc. Am. 133(5), 3613–3613 (2013). https://doi.org/10.1121/1.4806739
Buskenes, J.I., Asen, J.P., Nilsen, C.I.C., Austeng, A.: An optimized GPU implementation of the MVDR beamformer for active sonar imaging. IEEE J. Oceanic Eng. 40(2), 441–451 (2015). https://doi.org/10.1109/JOE.2014.2320631
Griffin, D.R.: Listening in the Dark: The Acoustic Orientation of Bats and Men. Dover Publications (1974)
Kerstens R., Laurijssen, D., Schouten, G., Steckel, J.: 3D point cloud data acquisition using a synchronized in-air imaging sonar sensor network. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2019, to be published)
Kerstens, R., Laurijssen, D., Steckel, J.: eRTIS: a fully embedded real time 3D imaging sonar sensor for robotic applications. In: IEEE International Conference on Robotics and Automation (2019, to be published)
Lorente, J., Vidal, A.M., Pinero, G., Belloch, J.A.: Parallel implementations of beamforming design and filtering for microphone array applications. In: European Signal Processing Conference (2011)
Schneider, M., Schuh, F., Kellermann, W.: The generalized frequency-domain adaptive filtering algorithm implemented on a GPU for large-scale multichannel acoustic echo cancellation. In: Speech Communication, 10. ITG Symposium, VDE Verlag GmbH, p. 296 (2012)
NVIDIA: CUDA Toolkit (2019). https://docs.nvidia.com/cuda/index.html
Python: GlobalInterpreterLock (2019). https://wiki.python.org/moin/GlobalInterpreterLock
Schnitzler, H.U., Moss, C.F., Denzinger, A.: From spatial orientation to food acquisition in echolocating bats. Trends Ecol. Evol. 18(8), 386–394 (2003). https://doi.org/10.1016/S0169-5347(03)00185-X
Steckel, J.: RTIS (2019). https://www.3dsonar.eu/
Steckel, J., Peremans, H.: BatSLAM: simultaneous localization and mapping using biomimetic sonar. PLoS ONE 8(1), e54,076 (2013). https://doi.org/10.1371/journal.pone.0054076
Steckel, J., Peremans, H.: Acoustic flow-based control of a mobile platform using a 3D sonar sensor. IEEE Sens. J. 17(10), 3131–3141 (2017). https://doi.org/10.1109/JSEN.2017.2688476
Steckel, J., Boen, A., Peremans, H.: Broadband 3-D sonar system using a sparse array for indoor navigation. IEEE Trans. Rob. 29(1), 161–171 (2013). https://doi.org/10.1109/TRO.2012.2221313
Van Trees, H.L.: Optimum Array Processing. Wiley, New York (2002). https://doi.org/10.1002/0471221104
Vanneste, S., de Hoog, J., Huybrechts, T., Bosmans, S., Sharif, M., Mercelis, S., Hellinckx, P.: Distributed uniform streaming framework: towards an elastic fog computing platform for event stream processing. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 426–436 (2018). https://doi.org/10.1007/978-3-030-02607-339
Garage, W.: Stanford Artificial Intelligence Laboratory. ROS.org (2019). http://www.ros.org/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jansen, W., Laurijssen, D., Kerstens, R., Daems, W., Steckel, J. (2020). In-Air Imaging Sonar Sensor Network with Real-Time Processing Using GPUs. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2019. Lecture Notes in Networks and Systems, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-33509-0_67
Download citation
DOI: https://doi.org/10.1007/978-3-030-33509-0_67
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33508-3
Online ISBN: 978-3-030-33509-0
eBook Packages: EngineeringEngineering (R0)