Skip to main content

Unit Disk Cover for Massive Point Sets

  • Conference paper
  • First Online:
Analysis of Experimental Algorithms (SEA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11544))

Included in the following conference series:

Abstract

Given a set of points in the plane, the Unit Disk Cover (UDC) problem asks to compute the minimum number of unit disks required to cover the points, along with a placement of the disks. The problem is NP-Hard and several approximation algorithms have been designed over the last three decades.

In this paper, we experimentally compare practical performances of some of these algorithms on massive point sets. The goal is to investigate which algorithms run fast and give good approximation in practice.

We present an elementary online 7-approximation algorithm for UDC which runs in \(\mathcal O(n)\) time on average and is easy to implement. In our experiments with both synthetic and real-world massive point sets, we have observed that this algorithm is up to 61.63 times and at least 2.9 times faster than the existing algorithms implemented in this paper. It gave 2.7-approximation in practice for the point sets used in our experiments. In our knowledge, this is the first work which experimentally compares the existing algorithms for UDC.

Research supported by the University of North Florida start-up fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In [17], the author claims this constant to be 4, whereas in [5, 15, 22] the authors claims it to be 8. Unfortunately, in all these papers the claims appear unjustified.

  2. 2.

    In the literature of online algorithms, the term competitive ratio is used instead of approximation factor.

  3. 3.

    https://www.kaggle.com/rtatman/188-million-us-wildfires/home.

  4. 4.

    https://www.kaggle.com/wikunia/nyc-taxis-combined-with-dimacs/home.

  5. 5.

    https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city.

  6. 6.

    https://www.kaggle.com/noaa/severe-weather-data-inventory.

References

  1. www.math.uwaterloo.ca/tsp/

  2. Agarwal, P.K., Pan, J.: Near-linear algorithms for geometric hitting sets and set covers. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 271. ACM (2014)

    Google Scholar 

  3. Aloupis, G., Hearn, R.A., Iwasawa, H., Uehara, R.: Covering points with disjoint unit disks. In: CCCG, pp. 41–46 (2012)

    Google Scholar 

  4. Bar-Yehuda, R., Rawitz, D.: A note on multicovering with disks. Comput. Geom. 46(3), 394–399 (2013)

    Article  MathSciNet  Google Scholar 

  5. Biniaz, A., Liu, P., Maheshwari, A., Smid, M.: Approximation algorithms for the unit disk cover problem in 2D and 3D. Comput. Geom. 60, 8–18 (2017)

    Article  MathSciNet  Google Scholar 

  6. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

    Article  MathSciNet  Google Scholar 

  7. Bus, N., Mustafa, N.H., Ray, S.: Practical and efficient algorithms for the geometric hitting set problem. Discrete Appl. Math. 240, 25–32 (2018)

    Article  MathSciNet  Google Scholar 

  8. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chazelle, B.M., Lee, D.T.: On a circle placement problem. Computing 36(1–2), 1–16 (1986)

    Article  MathSciNet  Google Scholar 

  10. Das, G.K., Fraser, R., Lóopez-Ortiz, A., Nickerson, B.G.: On the discrete unit disk cover problem. Int. J. Comput. Geom. Appl. 22(05), 407–419 (2012)

    Article  MathSciNet  Google Scholar 

  11. De Berg, M., Cabello, S., Har-Peled, S.: Covering many or few points with unit disks. Theory Comput. Syst. 45(3), 446–469 (2009)

    Article  MathSciNet  Google Scholar 

  12. Dumitrescu, A.: Computational geometry column 68. ACM SIGACT News 49(4), 46–54 (2018)

    Article  MathSciNet  Google Scholar 

  13. Dumitrescu, A., Ghosh, A., Tóth, C.D.: Online unit covering in euclidean space. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp. 609–623. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04651-4_41

    Chapter  Google Scholar 

  14. Fowler, R.J.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

    Article  MathSciNet  Google Scholar 

  15. Franceschetti, M., Cook, M., Bruck, J.: A geometric theorem for approximate disk covering algorithms (2001)

    Google Scholar 

  16. Fu, B., Chen, Z., Abdelguerfi, M.: An almost linear time 2.8334-approximation algorithm for the disc covering problem. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 317–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72870-2_30

    Chapter  Google Scholar 

  17. Gonzalez, T.F.: Covering a set of points in multidimensional space. Inf. Process. Lett. 40(4), 181–188 (1991)

    Article  MathSciNet  Google Scholar 

  18. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM (JACM) 32(1), 130–136 (1985)

    Article  MathSciNet  Google Scholar 

  19. Kaplan, H., Katz, M.J., Morgenstern, G., Sharir, M.: Optimal cover of points by disks in a simple polygon. SIAM J. Comput. 40(6), 1647–1661 (2011)

    Article  MathSciNet  Google Scholar 

  20. Liao, C., Hu, S.: Polynomial time approximation schemes for minimum disk cover problems. J. Comb. Optim. 20(4), 399–412 (2010)

    Article  MathSciNet  Google Scholar 

  21. Liaw, C., Liu, P., Reiss, R.: Approximation schemes for covering and packing in the streaming model. In: Canadian Conference on Computational Geometry (2018)

    Google Scholar 

  22. Liu, P., Lu, D.: A fast 25/6-approximation for the minimum unit disk cover problem. arXiv preprint arXiv:1406.3838 (2014)

  23. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board, 4.13 edn. (2018). https://doc.cgal.org/4.13/Manual/packages.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, A., Hicks, B., Shevchenko, R. (2019). Unit Disk Cover for Massive Point Sets. In: Kotsireas, I., Pardalos, P., Parsopoulos, K., Souravlias, D., Tsokas, A. (eds) Analysis of Experimental Algorithms. SEA 2019. Lecture Notes in Computer Science(), vol 11544. Springer, Cham. https://doi.org/10.1007/978-3-030-34029-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34029-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34028-5

  • Online ISBN: 978-3-030-34029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy