Skip to main content

A Local Search with a Surrogate Assisted Option for Instance Reduction

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2020)

Abstract

In data mining, instance reduction is a key data pre-processing step that simplifies and cleans raw data, by either selecting or creating new samples, before applying a learning algorithm. This usually yields to a complex large scale and computationally expensive optimisation problem which has been typically tackled by sophisticated population-based metaheuristics. Unlike the recent literature, in order to accomplish this target, this article proposes the use of a simple local search algorithm and its integration with an optional surrogate assisted model. This local search, in accordance with variable decomposition techniques for large scale problems, perturbs an n-dimensional vector along the directions identified by its design variables one by one.

Empirical results in 40 small data sets show that, despite its simplicity, the proposed baseline local search on its own is competitive with more complex algorithms representing the state-of-the-art for instance reduction in classification problems. The use of the proposed local surrogate model enables a reduction of the computationally expensive objective function calls with accuracy test results overall comparable with respect to its baseline counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cano, J.R., Herrera, F., Lozano, M.: Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Trans. Evol. Comput. 7(6), 561–575 (2003)

    Article  Google Scholar 

  2. Caraffini, F., Neri, F., Iacca, G.: Large scale problems in practice: the effect of dimensionality on the interaction among variables. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 636–652. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_41

    Chapter  Google Scholar 

  3. Caraffini, F., Neri, F., Iacca, G., Mol, A.: Parallel memetic structures. Inf. Sci. 227, 60–82 (2013)

    Article  MathSciNet  Google Scholar 

  4. Caraffini, F., Neri, F., Picinali, L.: An analysis on separability for memetic computing automatic design. Inf. Sci. 265, 1–22 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  6. Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)

    Article  Google Scholar 

  7. García, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012)

    Article  Google Scholar 

  8. García, S., Cano, J.R., Herrera, F.: A memetic algorithm for evolutionary prototype selection: a scaling up approach. Pattern Recogn. 41(8), 2693–2709 (2008)

    Article  Google Scholar 

  9. García-Pedrajas, N., de Haro-García, A., Pérez-Rodríguez, J.: A scalable memetic algorithm for simultaneous instance and feature selection. Evol. Comput. 22(1), 1–45 (2014)

    Article  Google Scholar 

  10. Hidalgo, B., Goodman, M.: Multivariate or multivariable regression? Am. J. Public Health 103, 39–40 (2013)

    Article  Google Scholar 

  11. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  12. Jobson, J.D.: Multiple linear regression. In: Jobson, J.D. (ed.) Applied Multivariate Data Analysis. STS, pp. 219–398. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-0955-3_4

    Chapter  Google Scholar 

  13. Krasnogor, N.: Towards robust memetic algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms. STUDFUZZ, vol. 166, pp. 185–207. Springer, Berlin (2004). https://doi.org/10.1007/3-540-32363-5_9

    Chapter  Google Scholar 

  14. Krawczyk, B., Triguero, I., García, S., Woźniak, M., Herrera, F.: Instance reduction for one-class classification. Knowl. Inf. Syst. 59(3), 601–628 (2018). https://doi.org/10.1007/s10115-018-1220-z

    Article  Google Scholar 

  15. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 210–224 (2012)

    Article  Google Scholar 

  16. Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing surrogate-assisted evolutionary computation. IEEE Trans. Evol. Comput. 14(3), 329–355 (2010)

    Article  Google Scholar 

  17. Lin, S.F., Cheng, Y.C.: A separability detection approach to cooperative particle swarm optimization. In: Proceedings of the International Conference on Natural Computation, pp. 1141–1145 (2011)

    Google Scholar 

  18. Nanni, L., Lumini, A.: Particle swarm optimization for prototype reduction. Neurocomputing 72(4–6), 1092–1097 (2008)

    Google Scholar 

  19. Neri, F., del Toro Garcia, X., Cascella, G.L., Salvatore, N.: Surrogate assisted local search on PMSM drive design. COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. 27(3), 573–592 (2008)

    Article  Google Scholar 

  20. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms beat evolutionary algorithms on the class of hurdle problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1071–1078. ACM (2018)

    Google Scholar 

  21. Resende, M.G.C., Ribeiro, C.C.: Local search. In: Resende, M.G.C., Ribeiro, C.C. (eds.) Optimization by GRASP, pp. 63–93. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-6530-4_4

    Chapter  MATH  Google Scholar 

  22. Ong, Y.S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Trans. Evol. Comp. 10(4), 392–404 (2006)

    Article  Google Scholar 

  23. Regis, R.G.: Surrogate-assisted particle swarm with local search for expensive constrained optimization. In: Korošec, P., Melab, N., Talbi, E.-G. (eds.) BIOMA 2018. LNCS, vol. 10835, pp. 246–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91641-5_21

    Chapter  Google Scholar 

  24. Ros, R., Hansen, N.: A simple modification in CMA-ES achieving linear time and space complexity. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 296–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_30

    Chapter  Google Scholar 

  25. Pilato, C., Loiacono, D., Tumeo, A., Ferrandi, F., Lanzi, P.L., Sciuto, D.: Speeding-up expensive evaluations in high-level synthesis using solution modeling and fitness inheritance. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems. ALO, vol. 2, pp. 701–723. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-10701-6_26

    Chapter  Google Scholar 

  26. Tong, H., Huang, C., Liu, J., Yao, X.: Voronoi-based efficient surrogate-assisted evolutionary algorithm for very expensive problems. In: IEEE Congress on Evolutionary Computation, pp. 1996–2003 (2019)

    Google Scholar 

  27. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)

    Article  MathSciNet  Google Scholar 

  28. Triguero, I., Derrac, J., García, S., Herrera, F.: A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Trans. Syst. Man, Cybern.-Part C 42(1), 86–100 (2012)

    Article  Google Scholar 

  29. Triguero, I., García, S., Herrera, F.: IPADE: iterative prototype adjustment for nearest neighbor classification. IEEE Trans. Neural Netw. 21(12), 1984–1990 (2010)

    Article  Google Scholar 

  30. Triguero, I., García, S., Herrera, F.: Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recogn. 44(4), 901–916 (2011)

    Article  Google Scholar 

  31. Triguero, I., Peralta, D., Bacardit, J., Garcia, S., Herrera, F.: A combined mapreduce-windowing two-level parallel scheme for evolutionary prototype generation. In: IEEE Congress on Evolutionary Computation, pp. 3036–3043 (2014)

    Google Scholar 

  32. Triguero, I., et al.: KEEL 3.0: an open source software for multi-stage analysis in data mining. Int. J. Comput. Intell. Syst. 10, 1238–1249 (2017)

    Article  Google Scholar 

  33. Triguero, I., Peralta, D., Bacardit, J., García, S., Herrera, F.: MRPR: a MapReduce solution for prototype reduction in big data classification. Neurocomputing 150, 331–345 (2015)

    Article  Google Scholar 

  34. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 3052–3059 (2008)

    Google Scholar 

  35. Wang, Y., Yin, D., Yang, S., Sun, G.: Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints. IEEE Trans. Cybern. 49(5), 1642–1656 (2019)

    Article  Google Scholar 

  36. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization. Soft. Comput. 15(11), 2175–2185 (2011). https://doi.org/10.1007/s00500-010-0645-4

    Article  Google Scholar 

  37. Zhou, Z., Ong, Y.S., Lim, M.H., Lee, B.S.: Memetic algorithm using multi-surrogates for computationally expensive optimization problems. Soft. Comput. 11(10), 957–971 (2007). https://doi.org/10.1007/s00500-006-0145-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferrante Neri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neri, F., Triguero, I. (2020). A Local Search with a Surrogate Assisted Option for Instance Reduction. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43722-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy