Skip to main content

Higher Order Regularity Shifts for the p-Poisson Problem

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

  • 1980 Accesses

Abstract

We discuss new local regularity estimates related to the p-Poisson equation −div(A(∇u)) = −divF for p > 2. In the planar case d = 2 we are able to transfer local interior Besov and Triebel-Lizorkin regularity up to first order derivatives from the forcing term F to the flux \(A(\nabla u)=\left | \nabla u \right |{ }^{p-2}\nabla u\). In case of higher dimensions or systems we have a smallness restriction on the corresponding smoothness parameter. Apart from that, our results hold for all reasonable parameter constellations related to weak solutions u ∈ W 1, p( Ω) including quasi-Banach cases with applications to adaptive finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araújo, D.J., Teixeira, E.V., and Urbano, J.M.: A proof of the C p′-regularity conjecture in the plane. Adv. Math. 316, 541–553 (2017)

    Article  MathSciNet  Google Scholar 

  2. Avelin, B., Kuusi, T., and Mingione, G.: Nonlinear Calderón-Zygmund theory in the limiting case. Arch. Rational Mech. Anal. 214(2), 663–714 (2018)

    Article  Google Scholar 

  3. Balci, A.Kh., Diening, L., and Weimar, M.: Higher order Calderón-Zygmund estimates for the p-Laplace equation. J. Differential Equations 268, 590–635 (2020)

    Article  MathSciNet  Google Scholar 

  4. Breit, D., Cianchi, A., Diening, L., Kuusi, T., and Schwarzacher, S.: Pointwise Calderón-Zygmund gradient estimates for the p-Laplace system. J. Math. Pures Appl. 114, 146–190 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cianchi, A., and Maz’ya, V.G.: Second-order two-sided estimates in nonlinear elliptic problems. Arch. Rational Mech. Anal. 229(2), 569–599 (2018)

    Article  MathSciNet  Google Scholar 

  6. Cioica-Licht, P., and Weimar, M.: On the limit regularity in Sobolev and Besov scales related to approximation theory. J. Fourier Anal. Appl. 26(1), Art. 10, 1–24 (2020)

    Google Scholar 

  7. Clop, A., Giova, R., and Passarelli di Napoli, A.: Besov regularity for solutions of p-harmonic equations. Adv. Nonlinear Anal. 8(1), 762–778 (2017)

    Google Scholar 

  8. Dahlke, S., Dahmen, W., and DeVore, R.: Nonlinear approximation and adaptive techniques for solving elliptic operator equations. In: Dahmen, W., Kurdila, A., and Oswald, P. (eds) Multiscale Wavelet Methods for Partial Differential Equations, pp. 237–283. Academic Press, San Diego (1997)

    Chapter  Google Scholar 

  9. Dahlke, S., Diening, L., Hartmann, C., Scharf, B., and Weimar M.: Besov regularity of solutions to the p-Poisson equation. Nonlinear Anal. 130, 298–329 (2016)

    Article  MathSciNet  Google Scholar 

  10. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  Google Scholar 

  11. DiBenedetto, E., and Manfredi, J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Amer. J. Math. 115(5), 1107–1134 (1993)

    Article  MathSciNet  Google Scholar 

  12. Diening, L., Kaplický, P., and Schwarzacher, S.: BMO estimates for the p-Laplacian. Nonlinear Anal. 75(2), 637–650 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gaspoz, F., and Morin, P.: Approximation classes for adaptive higher order finite element approximation. Math. Comp. 83(289), 2127–2160 (2014)

    Article  MathSciNet  Google Scholar 

  14. Hartmann, C., and Weimar, M.: Besov regularity of solutions to the p-Poisson equation in the vicinity of a vertex of a polygonal domain. Results Math. 73(41), 1–28 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Iwaniec, T.: Projections onto gradient fields and L p-estimates for degenerated elliptic operators. Studia Math. 75(3), 293–312 (1983).

    Article  MathSciNet  Google Scholar 

  16. Kuusi, T., and Mingione, G.: Linear potentials in nonlinear potential theory. Arch. Rational Mech. Anal. 207(1), 215–246 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kuusi, T., and Mingione, G.: Vectorial nonlinear potential theory. J. Eur. Math. Soc. 20(4), 929–1004 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lindgren, E., and Lindqvist, P.: Regularity of the p-Poisson equation in the plane. J. Anal. Math. 132(1), 217–228 (2017)

    Article  MathSciNet  Google Scholar 

  19. Runst, T., and Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter & Co., Berlin (1996)

    Book  Google Scholar 

  20. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Google Scholar 

  21. Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)

    Google Scholar 

  22. Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)

    Google Scholar 

  23. Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138, 219–240 (1977)

    Article  MathSciNet  Google Scholar 

  24. Weimar, M.: On the lack of interior regularity of the p-Poisson problem with p > 2, Math. Nachr., (2020), https://arxiv.org/abs/1907.12805

    Google Scholar 

Download references

Acknowledgements

The research of Anna Kh. Balci was partly supported by Russian Foundation for Basic Research project 19-01-00184 in Vladimir State University named after Alexander and Nikolay Stoletovs and by the German Research Foundation (DFG) through the CRC 1283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Weimar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kh. Balci, A., Diening, L., Weimar, M. (2021). Higher Order Regularity Shifts for the p-Poisson Problem. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_114

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy