Skip to main content

SOLAR: Second-Order Loss and Attention for Image Retrieval

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12370))

Included in the following conference series:

Abstract

Recent works in deep-learning have shown that second-order information is beneficial in many computer-vision tasks. Second-order information can be enforced both in the spatial context and the abstract feature dimensions. In this work, we explore two second-order components. One is focused on second-order spatial information to increase the performance of image descriptors, both local and global. It is used to re-weight feature maps, and thus emphasise salient image locations that are subsequently used for description. The second component is concerned with a second-order similarity (SOS) loss, that we extend to global descriptors for image retrieval, and is used to enhance the triplet loss with hard-negative mining. We validate our approach on two different tasks and datasets for image retrieval and image matching. The results show that our two second-order components complement each other, bringing significant performance improvements in both tasks and lead to state-of-the-art results across the public benchmarks. Code available at: http://github.com/tonyngjichun/SOLAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We omit Batch-Norm, ReLU and channel reduction for simplicity. Please refer to our code for the exact model details: http://github.com/tonyngjichun/SOLAR.

  2. 2.

    http://github.com/filipradenovic/cnnimageretrieval-pytorch.

  3. 3.

    http://cmp.felk.cvut.cz/cnnimageretrieval/data/networks/gl18/.

References

  1. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: CVPR (2016)

    Google Scholar 

  2. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR (2012)

    Google Scholar 

  3. Arandjelović, R., Zisserman, A.: DisLocation: scalable descriptor distinctiveness for location recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 188–204. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_13

    Chapter  Google Scholar 

  4. Babenko, A., Lempitsky, V.: Aggregating deep convolutional features for image retrieval. In: ICCV (2015)

    Google Scholar 

  5. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38

    Chapter  Google Scholar 

  6. Balntas, V., Lenc, K., Vedaldi, A., Tuytelaars, T., Matas, J., Mikolajczyk, K.: Hpatches: a benchmark and evaluation of handcrafted and learned local descriptors. TPAMI (2019)

    Google Scholar 

  7. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: Hpatches: a benchmark and evaluation of handcrafted and learned local descriptors. In: CVPR (2017)

    Google Scholar 

  8. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors with triplets and shallow convolutional neural networks. In: BMVC (2016)

    Google Scholar 

  9. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  10. Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 430–443. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_32

    Chapter  Google Scholar 

  11. Chen, D.M., et al.: City-scale landmark identification on mobile devices. In: CVPR (2011)

    Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  13. Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact bilinear pooling. In: CVPR (2016)

    Google Scholar 

  14. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_26

    Chapter  Google Scholar 

  15. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  17. Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 774–787. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_55

    Chapter  Google Scholar 

  18. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_24

    Chapter  Google Scholar 

  19. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: CVPR (2010)

    Google Scholar 

  20. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local images descriptors into compact codes. TPAMI 34, 1704–1716 (2012)

    Article  Google Scholar 

  21. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 685–701. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_48

    Chapter  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  24. Lin, T., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: ICCV (2015)

    Google Scholar 

  25. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: IJCV (2004)

    Google Scholar 

  26. Mikolajczyk, K., Matas, J.: Improving descriptors for fast tree matching by optimal linear projection. In: ICCV (2007)

    Google Scholar 

  27. Mishchuk, A., Mishkin, D., Radenović, F., Matas, J.: Working hard to know your neighbor’s margins: Local descriptor learning loss. In: NeurIPS (2017)

    Google Scholar 

  28. Mukundan, A., Tolias, G., Chum, O.: Explicit spatial encoding for deep local descriptors. In: CVPR (2019)

    Google Scholar 

  29. Ng, J.Y.H., Yang, F., Davis, L.S.: Exploiting local features from deep networks for image retrieval. In: CVPR Workshops (2015)

    Google Scholar 

  30. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2006)

    Google Scholar 

  31. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Image retrieval with deep local features and attention-based keypoints. In: ICCV (2017)

    Google Scholar 

  32. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  33. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher vectors. In: CVPR (2010)

    Google Scholar 

  34. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  35. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)

    Google Scholar 

  36. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: CVPR (2008)

    Google Scholar 

  37. Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting Oxford and Paris: large-scale image retrieval benchmarking. In: CVPR (2018)

    Google Scholar 

  38. Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW: unsupervised fine-tuning with hard examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 3–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_1

    Chapter  Google Scholar 

  39. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. TPAMI 41, 1655–1668 (2018)

    Article  Google Scholar 

  40. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  41. Revaud, J., Almazán, J., Sampaio de Rezende, R., Roberto de Souza, C.: Learning with average precision: Training image retrieval with a listwise loss. In: ICCV (2019)

    Google Scholar 

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  43. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: ICCV (2003)

    Google Scholar 

  44. Sydorov, V., Sakurada, M., Lampert, C.H.: Deep fisher kernels - end to end learning of the fisher kernel GMM parameters. In: CVPR (2014)

    Google Scholar 

  45. Teichmann, M., Araujo, A., Zhu, M., Sim, J.: Detect-to-retrieve: efficient regional aggregation for image search. In: CVPR (2019)

    Google Scholar 

  46. Tian, Y., Fan, B., Wu, F.: L2-Net: deep learning of discriminative patch descriptor in Euclidean space. In: CVPR (2017)

    Google Scholar 

  47. Tian, Y., Yu, X., Fan, B., Fuchao, W., Heijnen, H., Balntas, V.: SOSNet: second order similarity regularization for local descriptor learning. In: CVPR (2019)

    Google Scholar 

  48. Tolias, G., Avrithis, Y., Jégou, H.: To aggregate or not to aggregate: selective match kernels for image search. In: ICCV (2013)

    Google Scholar 

  49. Tolias, G., Avrithis, Y., Jégou, H.: Image search with selective match kernels: aggregation across single and multiple images. In: IJCV (2015)

    Google Scholar 

  50. Tolias, G., Furon, T., Jégou, H.: Orientation covariant aggregation of local descriptors with embeddings. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 382–397. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_25

    Chapter  Google Scholar 

  51. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. In: ICLR (2016)

    Google Scholar 

  52. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  53. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  54. Winder, S.A., Brown, M.: Learning local image descriptors. In: CVPR (2007)

    Google Scholar 

  55. Xia, B.N., Gong, Y., Zhang, Y., Poellabauer, C.: Second-order non-local attention networks for person re-identification. In: ICCV (2019)

    Google Scholar 

  56. Yang, T.Y., Nguyen, D.K., Heijnen, H., Balntas, V.: DAME WEB: DynAmic MEan with whitening ensemble binarization for landmark retrieval without human annotation. In: ICCV Workshops (2019)

    Google Scholar 

  57. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28

    Chapter  Google Scholar 

  58. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: ICML (2019)

    Google Scholar 

  59. Zhu, Z., Xu, M., Bai, S., Huang, T., Bain, X.: Asymmetric non-local neural networks for semantic segmentation. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by UK EPSRC EP/S032398/1 & EP/N007743/1 grants. We also thank Giorgos Tolias for providing \(\mathcal {R}\)-1M results of ResNet101-GeM [SOTA] in Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Ng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 460 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ng, T., Balntas, V., Tian, Y., Mikolajczyk, K. (2020). SOLAR: Second-Order Loss and Attention for Image Retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58595-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58594-5

  • Online ISBN: 978-3-030-58595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy