Abstract
To enhance the intelligence of IoT devices, offloading sufficient learning and inferencing down to the edge environment is promising. However, there are two main challenges for applying the cloud generated model in the edge environment. On the one hand, the input may vary on dimensions or cover different situations that the cloud hasn’t met. On the other hand, the model’s output might not satisfy the given user’s personalized preference. To make full use of the cloud generated model in the edge environment for accelerating personalized service provision, we propose cloud-aided edge learning. Unlike current federated learning and transfer learning, we focus on knowledge fusion in edge decision making and try to build the supplement/correction model. We take the personalized service provision in a smart lighting system as an example, design and implement the related deep reinforcement learning model, and take experiments based on the data generated on the open software DAILux to show our approach’s effectiveness and performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Jaroodi, J., Mohamed, N., Jawhar, I., Mahmoud, S.: CoTWare: a cloud of things middleware. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 214–219. IEEE (2017)
Amento, B., Balasubramanian, B., Hall, R.J., Joshi, K., Jung, G., Purdy, K.H.: FocusStack: orchestrating edge clouds using location-based focus of attention. In: 2016 IEEE/ACM Symposium on Edge Computing (SEC), pp. 179–191. IEEE (2016)
Atzori, L., Iera, A., Morabito, G.: Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw. 56, 122–140 (2017)
Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for Internet of Things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7
Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655–1674 (2019)
Cheng, Z., Zhao, Q., Wang, F., Jiang, Y., Xia, L., Ding, J.: Satisfaction based q-learning for integrated lighting and blind control. Energy Build. 127, 43–55 (2016)
Cheuque, C., Baeza, F., Marquez, G., Calderon, J.: Towards to responsive web services for smart home led control with Raspberry Pi: a first approach. In: 2015 34th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–4. IEEE (2015)
Corcoran, P., Datta, S.K.: Mobile-edge computing and the Internet of Things for consumers: extending cloud computing and services to the edge of the network. IEEE Consum. Electron. Mag. 5(4), 73–74 (2016)
Fu, Q., Hu, L., Wu, H., Hu, F., Hu, W., Chen, J.: A Sarsa-based adaptive controller for building energy conservation. J. Comput. Methods Sci. Eng. 18(2), 329–338 (2018)
Hardy, C., Le Merrer, E., Sericola, B.: Distributed deep learning on edge-devices: feasibility via adaptive compression. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), pp. 1–8. IEEE (2017)
Jang, M., Schwan, K., Bhardwaj, K., Gavrilovska, A., Avasthi, A.: Personal clouds: sharing and integrating networked resources to enhance end user experiences. In: IEEE INFOCOM 2014-IEEE Conference on Computer Communications, pp. 2220–2228. IEEE (2014)
Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)
Kandasamy, N.K., Karunagaran, G., Spanos, C., Tseng, K.J., Soong, B.H.: Smart lighting system using ANN-IMC for personalized lighting control and daylight harvesting. Build. Environ. 139, 170–180 (2018)
Lee, J., Tang, H., Park, J.: Energy efficient canny edge detector for advanced mobile vision applications. IEEE Trans. Circ. Syst. Video Technol. 28(4), 1037–1046 (2016)
Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the Internet of Things with edge computing. IEEE Netw. 32(1), 96–101 (2018)
Li, H., Wei, T., Ren, A., Zhu, Q., Wang, Y.: Deep reinforcement learning: framework, applications, and embedded implementations. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 847–854. IEEE (2017)
Liu, B., Wang, L., Liu, M.: Lifelong federated reinforcement learning: a learning architecture for navigation in cloud robotic systems. IEEE Robot. Autom. Lett. 4(4), 4555–4562 (2019)
Lu, S., Yao, Y., Shi, W.: Collaborative learning on the edges: a case study on connected vehicles. In: 2nd \(\{\)USENIX\(\}\) Workshop on Hot Topics in Edge Computing (HotEdge 19) (2019)
Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P.: Machine learning for Internet of Things data analysis: a survey. Digit. Commun. Netw. 4(3), 161–175 (2018)
Mattern, F., Floerkemeier, C.: From the Internet of computers to the Internet of Things. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) From Active Data Management to Event-Based Systems and More. LNCS, vol. 6462, pp. 242–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17226-7_15
Mortazavi, S.H., Salehe, M., Gomes, C.S., Phillips, C., de Lara, E.: Cloudpath: a multi-tier cloud computing framework. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, pp. 1–13 (2017)
Nadiger, C., Kumar, A., Abdelhak, S.: Federated reinforcement learning for fast personalization. In: 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 123–127. IEEE (2019)
Osia, S.A., et al.: A hybrid deep learning architecture for privacy-preserving mobile analytics. IEEE Internet Things J. 7, 4505–4518 (2020)
Paulauskaite-Taraseviciene, A., Morkevicius, N., Janaviciute, A., Liutkevicius, A., Vrubliauskas, A., Kazanavicius, E.: The usage of artificial neural networks for intelligent lighting control based on resident’s behavioural pattern. Elektronika ir Elektrotechnika 21(2), 72–79 (2015)
Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan, Y.: \(\mathbb{ECHO}\): an adaptive orchestration Platform for hybrid Dataflows across cloud and edge. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 395–410. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_28
Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: SpanEdge: towards unifying stream processing over central and near-the-edge data centers. In: 2016 IEEE/ACM Symposium on Edge Computing (SEC), pp. 168–178. IEEE (2016)
Samie, F., Bauer, L., Henkel, J.: From cloud down to things: an overview of machine learning in Internet of Things. IEEE Internet Things J. 6(3), 4921–4934 (2019)
Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)
Stojkoska, B.L.R., Trivodaliev, K.V.: A review of Internet of Things for smart home: challenges and solutions. J. Clean. Prod. 140, 1454–1464 (2017)
Wei, T., Wang, Y., Zhu, Q.: Deep reinforcement learning for building HVAC control. In: Proceedings of the 54th Annual Design Automation Conference 2017, pp. 1–6 (2017)
Xu, Q., Varadarajan, S., Chakrabarti, C., Karam, L.J.: A distributed canny edge detector: algorithm and FPGA implementation. IEEE Trans. Image Process. 23(7), 2944–2960 (2014)
Yazici, M.T., Basurra, S., Gaber, M.M.: Edge machine learning: enabling smart Internet of Things applications. Big Data Cogn. Comput. 2(3), 26 (2018)
Yu, T., Kuki, Y., Matsushita, G., Maehara, D., Sampei, S., Sakaguchi, K.: Design and implementation of lighting control system using battery-less wireless human detection sensor networks. IEICE Trans. Commun. E100-B(6), 974–985 (2016)
Zhang, Q., Zhang, Q., Shi, W., Zhong, H.: Distributed collaborative execution on the edges and its application to amber alerts. IEEE Internet Things J. 5(5), 3580–3593 (2018)
Zhang, T., He, Z., Lee, R.B.: Privacy-preserving machine learning through data obfuscation. arXiv preprint arXiv:1807.01860 (2018)
Zhang, X., Qiao, M., Liu, L., Xu, Y., Shi, W.: Collaborative cloud-edge computation for personalized driving behavior modeling. In: Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pp. 209–221 (2019)
Zhang, Y., Ma, X., Zhang, J., Hossain, M.S., Muhammad, G., Amin, S.U.: Edge intelligence in the cognitive Internet of Things: improving sensitivity and interactivity. IEEE Netw. 33(3), 58–64 (2019)
Zhuo, H.H., Feng, W., Xu, Q., Yang, Q., Lin, Y.: Federated reinforcement learning. arXiv:1901.08277 (2019)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Na, J., Zhang, H., Deng, X., Zhang, B., Ye, Z. (2020). Accelerate Personalized IoT Service Provision by Cloud-Aided Edge Reinforcement Learning: A Case Study on Smart Lighting. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds) Service-Oriented Computing. ICSOC 2020. Lecture Notes in Computer Science(), vol 12571. Springer, Cham. https://doi.org/10.1007/978-3-030-65310-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-65310-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65309-5
Online ISBN: 978-3-030-65310-1
eBook Packages: Computer ScienceComputer Science (R0)