Skip to main content

A Traffic Prediction Algorithm Based on Converged Networks of LTE and Low Power Wide Area Networks

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

Network traffic plays an important role in network management and network activities. It has an important impact on traffic engineering and network performance. However, we have larger difficulties in capturing and estimating them. This paper proposes a new estimating algorithm to forecast and model network traffic in time-frequency synchronization applications. Our approach is based on the normal regression theory. Firstly, normal regression theory is used to characterize and model network traffic. Secondly, the corresponding normal regression model is created to describe network traffic by finding the model parameters using the samples about network traffic. Finally, the estimation algorithm is proposed to predict network traffic in time-frequency synchronization applications. Simulation results indicate that our approach is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akgul, T., Baykut, S., Kantarci, M., Oktug, S.: Periodicity-based anomalies in self-similar network traffic flow measurements. In: Proceedings of TIM 2011, vol. 60, no. 4, pp. 1358–1366 (2011)

    Google Scholar 

  2. Wei, L., Ma, L., Ju, X., et al.: Research on combination traffic forecasting method based on power grid IMS platform framework. Electric Power Inf. Commun. Technol. 93(442), 557–576 (2018)

    Google Scholar 

  3. Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2020)

    Article  Google Scholar 

  4. Sun, S., Zhang, C., Zhang, Y.: Traffic flow forecasting using a spatio-temporal Bayesian network predictor. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 273–278. Springer, Heidelberg (2005). https://doi.org/10.1007/11550907_43

    Chapter  Google Scholar 

  5. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)

    Article  MathSciNet  Google Scholar 

  6. Zhichen, Z.: Security monitoring technology of power grid industrial control system based on network traffic anomaly detection. Electric Power Inf. Commun. Technol. 93(442), 557–576 (2017)

    Google Scholar 

  7. Chen, W.: Dynamic baseline detection method for power data network service. In: American Institute of Physics Conference Series (2017)

    Google Scholar 

  8. Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)

    Article  MathSciNet  Google Scholar 

  9. Zhao, Z., Xiao, R., Pei, M., et al.: Prediction based on PSO-SVM in power communication network traffic. Appl. Mech. Mater. 602–605, 2889–2892 (2014)

    Article  Google Scholar 

  10. Tang, L., Du, S., et al.: A feature matching based traffic model of power distribution communication network. Power Syst. Autom. 40(07), 107–112 (2016)

    Google Scholar 

  11. Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01423-3

  12. Li, C., Jing, S., Sha, L., et al.: An algorithm for business resource uniform distribution in power communication network based on entropy. Power Syst. Technol. (2017)

    Google Scholar 

  13. Luo, Z., Yu, J., Chang, J., et al.: Modeling and simulation of distribution power communication traffic engineering based on PTN. In: International Conference on Computer Science & Network Technology. IEEE (2012)

    Google Scholar 

  14. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01424-2

  15. Kuchu, G., Kharchenko, V., Kovalenko, A., et al.: Approaches to selection of combinatorial algorithm for optimization in network traffic control of safety-critical systems. In: 2016 IEEE East-West Design & Test Symposium (EWDTS). IEEE (2016)

    Google Scholar 

  16. Xiong, L., Fan, Y., Liu, Y., et al.: Reliability analysis of service routing for a power system communication network based on MCS-RBD: reliability analysis of service routing based on MCS-RBD. IEEJ Trans. Electr. Electron. Eng. 13(1), 127–135 (2018)

    Google Scholar 

  17. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 2017(220), 160–169 (2017)

    Article  Google Scholar 

  18. Yang, Y., Niu, X., Li, L., et al.: A secure and efficient transmission method in connected vehicular cloud computing. IEEE Network 32, 14–19 (2018)

    Google Scholar 

  19. Kaur, K., Garg, S., Kaddoum, G., et al.: Demand-response management using a fleet of electric vehicles: an opportunistic-SDN-based edge-cloud framework for smart grids. IEEE Network 32, 46–53 (2019)

    Google Scholar 

  20. Jiang, D., Huo, L., Lv, Z., Song, H., Qin, W.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  21. Guo, H., Zhang, J., Liu, J.: FiWi-enhanced vehicular edge computing networks. IEEE Veh. Technol. Mag. 14, 45–53 (2019)

    Google Scholar 

  22. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 1–21 (2019)

    Google Scholar 

  23. Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Network 32, 78–83 (2018)

    Google Scholar 

  24. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  25. Huo, L., Jiang, D., Zhu, X., et al.: An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. Int. J. Commun. Syst. 1–12 (2019). Online available

    Google Scholar 

  26. Wang, J., He, B., Wang, J., et al.: Intelligent VNFs selection based on traffic identification in vehicular cloud networks. IEEE Trans. Veh. Technol. 68(5), 4140–4147 (2019)

    Article  Google Scholar 

  27. Wang, F., Jiang, D., Qi, S., et al.: A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01421-5

  28. Li, M., Si, P., Zhang, Y.: Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. IEEE Trans. Veh. Technol. 67(10), 9073–9086 (2018)

    Article  Google Scholar 

  29. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  30. Garg, S., Kaur, K., Ahmed, S., et al.: MobQoS: Mobility-aware and QoS-driven SDN framework for autonomous vehicles. IEEE Wireless Commun. 26, 12–20 (2019)

    Google Scholar 

  31. Lin, C., Deng, D., Yao, C.: Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units. IEEE Internet Things J. 5(5), 3692–3700 (2018)

    Article  Google Scholar 

  32. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  33. Garg, S., Singh, A., Batra, S., et al.: UAV-empowered edge computing environment for cyber-threat detection in smart vehicles. IEEE Network 32, 42–51 (2018)

    Google Scholar 

  34. Huo, L., Jiang, D., Qi, S., et al.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01419-z

  35. Keshavamurthy, P., Pateromichelakis, E., Dahlhaus, D., et al.: Cloud-enabled radio resource management for co-operative driving vehicular networks. In: Proceedings of WCNC 2019, pp. 1–6 (2019)

    Google Scholar 

  36. Jiang, D., Wang, Y., Lv, Z., Qi, S., Singh, S.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Google Scholar 

  37. Li, J., Shen, X., Chen, L., et al.: Service migration in fog computing enabled cellular networks to support real-time vehicular communications. IEEE Access 7(2019), 13704–13714 (2019)

    Article  Google Scholar 

  38. Das, D.: Improving throughput and energy efficiency in vehicular Ad-Hoc networks using Internet of vehicles and mobile femto access points. In: Proceedings of TENCON 2019, pp. 1–5 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Sun, F., Liu, Y., Ren, S., Nan, Y., Chen, C. (2021). A Traffic Prediction Algorithm Based on Converged Networks of LTE and Low Power Wide Area Networks. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-72792-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72792-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72791-8

  • Online ISBN: 978-3-030-72792-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy