Skip to main content

A Method for Modeling Process Performance Indicators Variability Integrated to Customizable Processes Models

  • Conference paper
  • First Online:
Research Challenges in Information Science (RCIS 2021)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 415))

Included in the following conference series:

  • 1462 Accesses

Abstract

Process Performance Indicators (PPIs) are quantifiable metrics to evaluate the business process performance providing essential information for decision-making as regards to efficiency and effectiveness. Nowadays, customizable process models and PPIs are usually modeled separately, especially when dealing with PPIs variability. Likewise, modeling PPI variants with no explicit link with the related customizable process generates redundant models, making adjustment and maintenance difficult. The use of appropriate methods and tools is needed to enable the integration and support of PPIs variability in customizable process models. In this paper, we propose a method based on the Process Performance Indicator Calculation Tree (PPICT), which allows to model the PPIs variability linked to customizable processes modeled on the Business Process Feature Model (BPFM) approach. The Process Performance Indicator Calculation (PPIC) method supports PPIs variability modeling through five design stages, which concerns the PPICT design, the integration of PPICT-BMFM and the configuration of required PPIs aligned with process activities. The PPIC method is supported by a metamodel and a graphical notation. This method has been implemented in a prototype using the ADOxx platform. A partial user-centered evaluation of the PPICT use was carried out in a real utility distribution case to model PPIs variability linked to a customizable process model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.incom-sa.fr.

  2. 2.

    https://drive.google.com/drive/folders/1fvjgJsUu3uzbte8DL_Q5eehP4nyICiHS?usp=sharing.

  3. 3.

    www.adoxx.org.

  4. 4.

    www.learnpad.eu.

References

  1. La Rosa, M., Van Der Aalst, W.M.P., Dumas, M., Milani, F.P.: Business process variability modeling: a survey. ACM Comput. Surv. (CSUR) 50, 2 (2017)

    Article  Google Scholar 

  2. Milani, F., Dumas, M., Ahmed, N., Matulevičius, R.: Modelling families of business process variants: A decomposition driven method. Inf. Syst. 56, 55–72 (2016)

    Article  Google Scholar 

  3. Domínguez, E., Pérez, B., Rubio, Á.L., Zapata, M.A.: A taxonomy for key performance indicators management. Comput. Stand. Interfaces 64, 24–40 (2019)

    Article  Google Scholar 

  4. Estrada-Torres, B.: Improve performance management in flexible business processes. In: Proceedings of the 21st International Systems and Software Product Line Conference-Volume B, pp. 145–149 (2017)

    Google Scholar 

  5. del Río Ortega, A., Resinas, M., Durán, A., Bernárdez, B., Ruiz-Cortés, A., Toro, M.: Visual PPINOT: a graphical notation for process performance indicators. Bus. Inf. Syst. Eng. 61, 137–161 (2019)

    Article  Google Scholar 

  6. Peral, J., Maté, A., Marco, M.: Application of data mining techniques to identify relevant key performance indicators. Comput. Stand. Interfaces 54, 76–85 (2017)

    Article  Google Scholar 

  7. Estrada Torres, B., Torres, V., del Río Ortega, A., Resinas Arias de Reyna, M., Pelechano, V., Ruiz Cortés, A.: Defining PPIs for process variants based on change patterns. In: JCIS 2016: XII Jornadas de Ciencia e Ingeniería de Servicios (2016)

    Google Scholar 

  8. Estrada-Torres, B., del-Río-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Identifying variability in process performance indicators. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 91–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45468-9_6

    Chapter  Google Scholar 

  9. La Rosa, M., Dumas, M., Ter Hofstede, A.H.M., Mendling, J.: Configurable multi-perspective business process models. Inf. Syst. 36, 313–340 (2011)

    Article  Google Scholar 

  10. Gröner, G., et al.: Validation of families of business processes. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 551–565. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_41

    Chapter  Google Scholar 

  11. Villota, A., Mazo, R., Salinesi, C.: The high-level variability language: an ontological approach. In: Proceedings of the 23rd International Systems and Software Product Line Conference-Volume B, pp. 162–169 (2019)

    Google Scholar 

  12. Diaz, D.: Integrating PPI variability in the context of customizable processes by extending the business process feature model. In: 2020 IEEE 24th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 80–85. IEEE (2020)

    Google Scholar 

  13. Diaz, D., Cortes-Cornax, M., Labbé, C., Faure, D.: Modélisation de la variabilité des indicateurs dans le cadre des administrations de services publics (2019)

    Google Scholar 

  14. Cognini, R., Corradini, F., Polini, A., Re, B.: Business process feature model: an approach to deal with variability of business processes. In: Karagiannis, D., Mayr, H., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 171–194. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  15. Mandran, N., Dupuy-Chessa, S.: Supporting experimental methods in information system research. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS), pp. 1–12. IEEE (2018)

    Google Scholar 

  16. Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators. Inf. Syst. 35, 505–527 (2010)

    Article  Google Scholar 

  17. Saldivar, J., Vairetti, C., Rodríguez, C., Daniel, F., Casati, F., Alarcón, R.: Analysis and improvement of business process models using spreadsheets. Inf. Syst. 57, 1–19 (2016)

    Article  Google Scholar 

  18. Friedenstab, J.-P., Janiesch, C., Matzner, M., Muller, O.: Extending BPMN for business activity monitoring. In: 2012 45th Hawaii International Conference on System Sciences, pp. 4158–4167. IEEE (2012)

    Google Scholar 

  19. Delgado, A., Weber, B., Ruiz, F., de Guzmán, I.G.-R., Piattini, M.: An integrated approach based on execution measures for the continuous improvement of business processes realized by services. Inf. Softw. Technol. 56, 134–162 (2014)

    Article  Google Scholar 

  20. OMG: Case Management Model and Notation (CMMN). 1.1 (2016)

    Google Scholar 

  21. Del-RíO-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-Cortés, A.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38, 470–490 (2013)

    Article  Google Scholar 

  22. van der Aa, H., et al.: Narrowing the business-IT gap in process performance measurement. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 543–557. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_33

    Chapter  Google Scholar 

  23. Reichert, M., Hallerbach, A., Bauer, T.: Lifecycle management of business process variants. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1 International Handbooks on Information Systems, pp. 251–278. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45100-3_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diaz, D., Cortes-Cornax, M., Front, A., Labbe, C., Faure, D. (2021). A Method for Modeling Process Performance Indicators Variability Integrated to Customizable Processes Models. In: Cherfi, S., Perini, A., Nurcan, S. (eds) Research Challenges in Information Science. RCIS 2021. Lecture Notes in Business Information Processing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-030-75018-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75018-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75017-6

  • Online ISBN: 978-3-030-75018-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy