Abstract
Process Performance Indicators (PPIs) are quantifiable metrics to evaluate the business process performance providing essential information for decision-making as regards to efficiency and effectiveness. Nowadays, customizable process models and PPIs are usually modeled separately, especially when dealing with PPIs variability. Likewise, modeling PPI variants with no explicit link with the related customizable process generates redundant models, making adjustment and maintenance difficult. The use of appropriate methods and tools is needed to enable the integration and support of PPIs variability in customizable process models. In this paper, we propose a method based on the Process Performance Indicator Calculation Tree (PPICT), which allows to model the PPIs variability linked to customizable processes modeled on the Business Process Feature Model (BPFM) approach. The Process Performance Indicator Calculation (PPIC) method supports PPIs variability modeling through five design stages, which concerns the PPICT design, the integration of PPICT-BMFM and the configuration of required PPIs aligned with process activities. The PPIC method is supported by a metamodel and a graphical notation. This method has been implemented in a prototype using the ADOxx platform. A partial user-centered evaluation of the PPICT use was carried out in a real utility distribution case to model PPIs variability linked to a customizable process model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
La Rosa, M., Van Der Aalst, W.M.P., Dumas, M., Milani, F.P.: Business process variability modeling: a survey. ACM Comput. Surv. (CSUR) 50, 2 (2017)
Milani, F., Dumas, M., Ahmed, N., Matulevičius, R.: Modelling families of business process variants: A decomposition driven method. Inf. Syst. 56, 55–72 (2016)
Domínguez, E., Pérez, B., Rubio, Á.L., Zapata, M.A.: A taxonomy for key performance indicators management. Comput. Stand. Interfaces 64, 24–40 (2019)
Estrada-Torres, B.: Improve performance management in flexible business processes. In: Proceedings of the 21st International Systems and Software Product Line Conference-Volume B, pp. 145–149 (2017)
del Río Ortega, A., Resinas, M., Durán, A., Bernárdez, B., Ruiz-Cortés, A., Toro, M.: Visual PPINOT: a graphical notation for process performance indicators. Bus. Inf. Syst. Eng. 61, 137–161 (2019)
Peral, J., Maté, A., Marco, M.: Application of data mining techniques to identify relevant key performance indicators. Comput. Stand. Interfaces 54, 76–85 (2017)
Estrada Torres, B., Torres, V., del Río Ortega, A., Resinas Arias de Reyna, M., Pelechano, V., Ruiz Cortés, A.: Defining PPIs for process variants based on change patterns. In: JCIS 2016: XII Jornadas de Ciencia e Ingeniería de Servicios (2016)
Estrada-Torres, B., del-Río-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Identifying variability in process performance indicators. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 91–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45468-9_6
La Rosa, M., Dumas, M., Ter Hofstede, A.H.M., Mendling, J.: Configurable multi-perspective business process models. Inf. Syst. 36, 313–340 (2011)
Gröner, G., et al.: Validation of families of business processes. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 551–565. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_41
Villota, A., Mazo, R., Salinesi, C.: The high-level variability language: an ontological approach. In: Proceedings of the 23rd International Systems and Software Product Line Conference-Volume B, pp. 162–169 (2019)
Diaz, D.: Integrating PPI variability in the context of customizable processes by extending the business process feature model. In: 2020 IEEE 24th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 80–85. IEEE (2020)
Diaz, D., Cortes-Cornax, M., Labbé, C., Faure, D.: Modélisation de la variabilité des indicateurs dans le cadre des administrations de services publics (2019)
Cognini, R., Corradini, F., Polini, A., Re, B.: Business process feature model: an approach to deal with variability of business processes. In: Karagiannis, D., Mayr, H., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 171–194. Springer, Heidelberg (2016)
Mandran, N., Dupuy-Chessa, S.: Supporting experimental methods in information system research. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS), pp. 1–12. IEEE (2018)
Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators. Inf. Syst. 35, 505–527 (2010)
Saldivar, J., Vairetti, C., Rodríguez, C., Daniel, F., Casati, F., Alarcón, R.: Analysis and improvement of business process models using spreadsheets. Inf. Syst. 57, 1–19 (2016)
Friedenstab, J.-P., Janiesch, C., Matzner, M., Muller, O.: Extending BPMN for business activity monitoring. In: 2012 45th Hawaii International Conference on System Sciences, pp. 4158–4167. IEEE (2012)
Delgado, A., Weber, B., Ruiz, F., de Guzmán, I.G.-R., Piattini, M.: An integrated approach based on execution measures for the continuous improvement of business processes realized by services. Inf. Softw. Technol. 56, 134–162 (2014)
OMG: Case Management Model and Notation (CMMN). 1.1 (2016)
Del-RíO-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-Cortés, A.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38, 470–490 (2013)
van der Aa, H., et al.: Narrowing the business-IT gap in process performance measurement. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 543–557. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_33
Reichert, M., Hallerbach, A., Bauer, T.: Lifecycle management of business process variants. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1 International Handbooks on Information Systems, pp. 251–278. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45100-3_11
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Diaz, D., Cortes-Cornax, M., Front, A., Labbe, C., Faure, D. (2021). A Method for Modeling Process Performance Indicators Variability Integrated to Customizable Processes Models. In: Cherfi, S., Perini, A., Nurcan, S. (eds) Research Challenges in Information Science. RCIS 2021. Lecture Notes in Business Information Processing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-030-75018-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-75018-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75017-6
Online ISBN: 978-3-030-75018-3
eBook Packages: Computer ScienceComputer Science (R0)