Abstract
Stuart Hall proposed the “encoding/decoding model of communication” for the theoretical method of media information production and dissemination in 1973. In 1980, he further proposed the research of classic contemporary culture titled “Encoding/Decoding”, which explained how media producers can “encode” an object, feeling, and ideas. Message in the media to achieve the purpose of disseminating information. In addition, “decoding” is the process and method of how the media message can be perceived by the “receiver” after being transformed and translated. It has been explained that the concept of encoding and decoding has a great influence on the research of different cultural media communication from the analogy to the digital age through many kinds of research. However, with the rapid development of digital media technology, we are faced with the production methods of information in tangible and intangible media, and most of them are translated in virtual form in programming languages or digital symbols. Encoding and decoding of digital symbols and codes has gradually changed the way we understand perception.
In this paper, we propose the “Gaussian Sensor System”, which consists of three parts: Gausstoys magnetic sensor module, video/audio encoding and decoding, and interactive installation art. We used damped oscillator magnetic balance and Gausstoys sensor as a tangible user interface (TUI), and integrated the Gaussian sensor into the interactive installation art. When the user intervenes with the floating magnet device and disturbs the magnetic field, the gaussian sensor will “encode” the human analogy behavior. Then the data of human behavior is transformed into visual video and sound feedback. The RGB color of visual video and frequency feedback of audio on the screen is the “decoding” of perception. Therefore, in our Gaussian Sensor System, “balance” is generated through the floating magnetic force in our artwork. After the user “intervenes”, the entire behavior is transformed into a digital reproduction of video/audio and then transmitted to the user the perception feedback of color and sound. Our creative design has been shown to “Tsing Hua Effects 2020: STEM with A” Technology and Art Festival of Tsing Hua University in Taiwan and “Art Gallery, 2016 SIGGRAPH Asia” in Macau. In the past, many applications of Gaussian Sensor were used in interactive games or interactive learning, but our application was in “interactive installation art”. We applied the damped oscillator magnetic balance as a tangible interface device, which is quite rare in HCI applications or interactive art. In the future, the media in the digital age that we are facing will gradually transform real-world cognitions through digital programming languages to produce new perceptions. At present, many kinds of research in HCI field have explained how to experience hearing, taste, and touch in digital media. The encoding and decoding of digital media will be one of the important topics in HCI in the future. Our creative design can be applied to more HCI or TUI research fields in the future and drive users to experience more diverse perceptions through digital media.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pereira, R., Baranauskas, M., Liu, K.: An essay on human values in HCI. SBC J. Interact. Syst. 9(1), 4–16 (2018)
Hsu, S.C., Chang, C.Y., Shih, K.P.: TmP-The Study and Application of Tangible mobile-Phone Interface of Emerging Presentation in Culture Creative Industry. MOST 103-2627-E-119-001, Taiwan (2013)
Chen, W.C., Hsu, S.C., Huang, Y.H.: Forces in Equilibrium. Siggraph ASIA - Art Gallery, Macao (2016)
Tsing, H.: Effects 2020-Technology Art Festival “STEM with A”, Hsichu City, Taiwan (2020)
Hall, S.: Encoding and Decoding in Television Discourse. CCCS Stencilled Paper no. 7; also in During, Simon (ed.) (1993). The Cultural Studies Reader (1973)
Hall, S.: Encoding/decoding. Media Cult. Stud. Keyworks 2, 163–174 (2001)
Hutchby, I.: Technologies, texts and affordances. Sociology 35(2), 441–456 (2001)
Shaw, A.: Encoding and decoding affordances: stuart hall and interactive media technologies. Media Cult. Soc. 39(4), 592–602 (2017)
Palmer, M.: Facebook as a Meta-ideological Apparatus: Reassessing the Encoding/Decoding Model in the Context of Social Media. Diss (2020)
Berkelman, P., Tix, B., Abdul-Ghani, H.: Electromagnetic position sensing and force feedback for a magnetic stylus with an interactive display. IEEE Mag. Lett. 10, 1–5 (2018)
Adel, A., Mansour, M., Micheal, M.M., Abdelmawla, A., Khalil, I.S., Misra, S.: Magnetic localization for an electromagnetic-based haptic interface. IEEE Mag. Lett. 10, 1–5 (2019)
Langerak, T., Zárate, J.J., Lindlbauer, D., Holz, C., Hilliges, O.: Omni: volumetric sensing and actuation of passive magnetic tools for dynamic haptic feedback. In: Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, pp. 594–606 (2020)
Schütze, A., Helwig, N., Schneider, T.: Sensors 4.0–smart sensors and measurement technology enable Industry 4.0. J. Sens. Sens. Syst. 7(1), 359–371 (2018)
Liang, R.H., Cheng, K.Y., Su, C.H., et al.: GaussSense: attachable stylus sensing using magnetic sensor grid. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 319–326 (2012)
Liang, R.H., Cheng, K.Y., Chan, L., et al.: GaussBits: magnetic tangible bits for portable and occlusion-free near-surface interactions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1391–1400 (2013)
Liang, R.H., Chan, L., Tseng, H.Y., et al.: GaussBricks: magnetic building blocks for constructive tangible interactions on portable displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3153–3162 (2014)
Magnetic Field Record. http://www.kyouei-ltd.co.jp/magnetic_field_record.html. Accessed 14 Nov 2020
GaussToys Inc. http://gausstoys.com/. Accessed 20 July 2016
Ishii, H., Lakatos, D., Bonanni, L., Labrune, J.B.: Radical atoms: beyond tangible bits, toward transformable materials. Interactions 19(1), 38–51 (2012)
Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits, and atoms. In: Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, pp. 234–241 (1997)
Ávila-Soto, M., Valderrama-Bahamóndez, E., Schmidt, A.: TanMath: a tangible math application to support children with visual impairment to learn basic arithmetic. In: Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments (2017)
Attard, G., Raffaele, C.D., Smith, S.: TangiBoard: a toolkit to reduce the implementation burden of tangible user interfaces in education. In: 2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT). IEEE (2019)
Myers, E.D.: Magnetic damping of beam balances improves speed, increases accuracy, and affords permanency: the theory of maganetic damping. Nat. Sci. Teach. Assoc. 38(7), 45–47 (1971)
The balance and oscillation of the magnet. https://www.youtube.com/watch?v=sU7Q26N7MvY&ab_channel=%E5%9C%8B%E7%AB%8B%E7%A7%91%E5%AD%B8%E5%B7%A5%E8%97%9D%E5%8D%9A%E7%89%A9%E9%A4%A8%E7%A7%91%E5%AD%B8%E5%AD%B8%E7%BF%92%E4%B8%AD%E5%BF%83. Accessed 20 Dec 2019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, YH., Chen, WC., Hsu, SC. (2021). Creative Design of Gaussian Sensor System with Encoding and Decoding. In: Yamamoto, S., Mori, H. (eds) Human Interface and the Management of Information. Information-Rich and Intelligent Environments. HCII 2021. Lecture Notes in Computer Science(), vol 12766. Springer, Cham. https://doi.org/10.1007/978-3-030-78361-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-78361-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78360-0
Online ISBN: 978-3-030-78361-7
eBook Packages: Computer ScienceComputer Science (R0)