Abstract
User experience (UX) design of human-robot interaction (HRI) is an emerging practice [1]. Best practices for this discipline are actively evolving as robotics expands into commercial markets. As is typical of emerging technologies, the technology itself takes center stage, continuing to present challenges to proper functioning as it is tested in real world applications. Also, deployment comes at a high price until the market is competitive enough to drive hardware and development prices down. All these aspects preclude an emphasis on UX design, until the technology and associated market reaches a tipping point and good user experience is in demand. If robots continue to be deployed at rates the industry currently predicts, the need for user experience design knowledge and best practices for HRI is eminent. Best practices are a collection of methods, specifically principles, heuristic evaluators and taxonomies [2]. Principles embody high level guidance for design direction and design processes [3]. Heuristics ensure measurable “must have” base-functionality [4,5,6]. Taxonomies provide a conceptual understanding of possible categories of interactivity [7,8,9]. This paper focuses on two aspects of best practices, 1.) proposing a robustly user-centric set of emerging technology principles for HRI, which is the area of best practices least explored by the literature, and 2.) proposing a design matrix as a beginning step in addressing the complexity of HRI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lindblom, J., Andreasson, R.: Current challenges for UX evaluation of human-robot interaction. In: Schlick, C., Trzcieliński, S. (eds.) Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future. Advances in Intelligent Systems and Computing, vol. 490, pp. 267–77. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41697-7_24
Best Practice: https://en.wikipedia.org/wiki/Best_practice. Accessed 12 Feb 2021
Tognazzini, B.: First Principles, HCI Design, Human Computer Interaction (HCI), Principles of HCI Design, Usability Testing. https://asktog.com/atc/principles-of-interaction-design/. Accessed 12 Feb 2021
Clarkson, E., Arkin, R.: Applying heuristic evaluation to human-robot interaction systems. In: GVU Tech Report No. GIT-GVU-06–08 (2006). ftp://ftp.cc.gatech.edu/pub/gvu/tr/2006/06-08.pdf
Powers, A.: FEATURE, what robotics can learn from HCI. Interactions 15(2), 67–69 (2008). https://doi.org/10.1145/1340961.1340978
Weiss, A., Wurhofer, D., Bernhaupt, R., Altmaninger, M., Tscheligi, M.: A methodological adaptation for heuristic evaluation of HRI. In: 19th International Symposium in Robot and Human Interactive Communication, Viareggio, pp. 1–6 (2010). https://doi.org/10.1109/ROMAN.2010.5598735.
Malik, A.A., Bilberg, A.: Developing a reference model for human–robot interaction. Int. J. Interact. Des. Manufact. (IJIDeM) 13(4), 1541–1547 (2019). https://doi.org/10.1007/s12008-019-00591-6
Yanco, H.A., Drury, J.L.: Classifying human-robot interaction: an updated taxonomy. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, The Hague, vol. 3, p. 2841 (2004). https://doi.org/10.1109/ICSMC.2004.1400763
Yanco, H.A, Drury, J.L.: A taxonomy for human-robot interaction. In: Proceedings of the AAAI Fall Symposium on Human-robot Interaction, pp. 111–119 (2002)
Rosenzweig, E.: Successful User Experience: Strategies and Roadmaps. Morgan Kaufmann Publishers Inc., San Francisco (2015). https://doi.org/10.1016/C2013-0-19353-1
Wigdor, D., Wixon, D.: Brave NUI World, Designing Natural User Interfaces for Touch and Gesture. Morgan Kaufman, Boston (2011)
Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley Publishing Co., Reading (1987)
Scholtz, J.: Evaluation methods for human-system performance of intelligent systems. In: Proceedings of PERMIS'02 (2002)
Nielsen, J.: Finding usability problems through heuristic evaluation. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 373–380. Association for Computing Machinery, Monterey (1992). https://doi.org/10.1145/142750.142834
Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 152–158. Association for Computing Machinery, Boston (1994). https://doi.org/10.1145/191666.191729
Mankoff, J., Dey, A.K., Hsieh, G., Kientz, J., Ames, M., Lederer, S.: Heuristic evaluation of ambient displays. In: Proceedings of CHI'03, pp. 169–176 (2003)
Onnasch, L., Roesler, E.: A taxonomy to structure and analyze human–robot interaction. Int. J. Soc. Robot. 1–17 (2020). https://doi.org/10.1007/s12369-020-00666-5
Weiss, A., Bernhaupt, R., Lankes, M., Tscheligi, M.: The USUS evaluation framework for human-robot interaction. Proc. AISB 09(4), 11–26 (2009)
Nielsen, J.: 10 Usability Heuristics for Interface Design. https://www.nngroup.com/articles/ten-usability-heuristics/. Accessed 12 Feb 2021
Liu, H., Wang, L.: Gesture recognition for human-robot collaboration: a review. Int. J. Ind. Ergon. 68, 355–367 (2018). https://doi.org/10.1016/j.ergon.2017.02.004
Sheikholeslami, S., Moon, A., Croft, E.A.: Cooperative gestures for industry: exploring the efficacy of robot hand configurations in expression of instructional gestures for human–robot interaction. Int. J. Robot. Res. 36, 699–720 (2017). https://doi.org/10.1177/0278364917709941
Getting Started with the Guide | Alexa Skills Kit: https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html. Accessed 12 Feb 2021
Principles of Leap Motion Interaction Design: https://blog.leapmotion.com/6-principles-of-interaction-design/. Accessed 12 Feb 2021
Our Principles – Google AI: https://ai.google/principles/. Accessed 12 Feb 2021
Campana, J.R., Quaresma, M.: The importance of specific usability guidelines for robot user interfaces. In: Marcus, A., Wang, W. (eds.) DUXU 2017. LNCS, vol. 10289, pp. 471–483. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58637-3_37
Shamonsky, D.: User Experience Design Principles for a Natural User Interface (NUI). https://www.ics.com/blog/user-experience-design-principles-natural-user-interface-nui. Accessed 12 Feb 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Shamonsky, D. (2021). User Experience Best Practices for Human-Robot Interaction. In: Kurosu, M. (eds) Human-Computer Interaction. Interaction Techniques and Novel Applications. HCII 2021. Lecture Notes in Computer Science(), vol 12763. Springer, Cham. https://doi.org/10.1007/978-3-030-78465-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-78465-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78464-5
Online ISBN: 978-3-030-78465-2
eBook Packages: Computer ScienceComputer Science (R0)