Skip to main content

Examining Video Recommendation Bias on YouTube

  • Conference paper
  • First Online:
Advances in Bias and Fairness in Information Retrieval (BIAS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1418))

  • 3385 Accesses

Abstract

In recent years, a growing number of journalistic and scholarly publications have paid particular attention to the broad societal impact of YouTube’s video recommendation system. Significantly, the YouTube algorithm’s alleged contributions to the formation of echo-chambers, filter-bubbles, polarization, radicalization, disinformation, and malicious use of information are among the top concerns. On top of the given issues, potential biases of the recommendation system in favor of a small number of videos, content producers, or channels would further exacerbate the magnitude of the problem, especially if a systematic understanding of the inherent nature and characteristics of the algorithm is lacking. In this study, we investigate the structure of recommendation networks and probabilistic distributions of the node-centric influence of recommended videos. Adopting a stochastic approach, we observe PageRank distributions over a diverse set of recommendation graphs we collected and built based on eight different real-world scenarios. In total, we analyzed 803,210 recommendations made by YouTube’s recommendation algorithm, based on specific search queries and seed datasets from previous studies. As a result, we demonstrate the existence of a structural, systemic, and inherent tendency to impose bias by YouTube’s video recommendation system in favor of a tiny fraction of videos in each scenario. We believe that this work sets the stage for further research in creating predictive modeling techniques that reduce bias in video recommendation systems and make algorithms fairer. The implementation of such attempts aims to reduce their potential harmful social and ethical impacts and increase public trust in these social systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    YouTube Tracker (2020), https://vtracker.host.ualr.edu, COSMOS, UALR.

References

  1. Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling popularity bias in learning-to-rank recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems (RecSys 2017), pp 42–46 (2020)

    Google Scholar 

  2. Alstott, J., Bullmore, E., Plenz, D.: Power-law: a Python package for analysis of heavy-tailed distributions. PloS One 9(1), e85777 (2014)

    Google Scholar 

  3. Bellogín, A., Castells, P., Cantador, I.: Statistical biases in information retrieval metrics for recommender systems. Inf. Retriev. J. 20(6), 606–634 (2017). https://doi.org/10.1007/s10791-017-9312-z

    Article  Google Scholar 

  4. Beutel, A., et al.: Fairness in recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2019), pp. 2212–2220 (2019)

    Google Scholar 

  5. Boratto, L., Marras, M., Faralli, S., and Stilo, G.: International workshop on algorithmic bias in search and recommendation (Bias 2020). In: Jose, J. et al. (eds.) Advances in Information Retrieval. ECIR 2020. Lecture Notes in Computer Science. Springer (2020)

    Google Scholar 

  6. Buntain, C., Bonneau, R., Nagler, J., Tucker, J.A.: YouTube Recommendations and Effects on Sharing Across Online Social Platforms (2020). arXiv preprint arXiv:2003.00970

  7. Clauset, A., Shalizi, C.R., Newman, M.E.: Power law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  Google Scholar 

  8. Davidson, J., et al.: The YouTube video recommendation system. In: Proceedings of the fourth ACM Conference on Recommender systems, pp. 293–296, September 2010

    Google Scholar 

  9. Faddoul, M., Chaslot, G., Farid, H.: A Longitudinal Analysis of YouTube’s Promotion of Conspiracy Videos (2020). arXiv preprint arXiv:2003.03318

  10. Galeano, K., Galeano, L., Mead, E., Spann, B., Kready, J., Agarwal, N.: The role of YouTube during the 2019 Canadian federal election: a multi-method analysis of online discourse and information actors, Fall 2020, no. 2, pp. 1–22. Queen’s University, Canada (2020). Journal of Future Conflict

    Google Scholar 

  11. Google Developers: YouTube Data API, Google (2020). https://developers.google.com/youtube/v3

  12. Hussein, E., Juneja, P., Mitra, T.: Measuring misinformation in video search platforms: an audit study on YouTube. Proc. ACM Hum.-Comput. Interact. 4(CSCW1), 1–27 (2020)

    Article  Google Scholar 

  13. Le Merrer, E., Trédan, G.: The topological face of recommendation. In: International Conference on Complex Networks and their Applications, pp. 897–908. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-72150-7_72

  14. Ledwich, M., Zaitsev, A.: Algorithmic extremism: Examining YouTube’s rabbit hole of radicalization. First Monday (2020)

    Google Scholar 

  15. Marcoux, T., Agarwal, N., Erol, R., Obadimu, A., Hussain, M.: Analyzing Cyber Influence Campaigns on YouTube using YouTubeTracker. Lecture Notes in Social Networks, Springer. Forthcoming (2018)

    Google Scholar 

  16. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab (1999)

    Google Scholar 

  17. Ribeiro, M.H., Ottoni, R., West, R., Almeida, V.A., Meira Jr., W.: Auditing radicalization pathways on YouTube. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 131–141 (2020)

    Google Scholar 

  18. Roose, K.: The making of a YouTube Radical. The New York Times (2019)

    Google Scholar 

  19. Roth, C., Mazières, A., Menezes, T.: Tubes and bubbles topological confinement of YouTube recommendations. PloS One 15(4), e0231703 (2020)

    Google Scholar 

  20. Tufekci, Z.: YouTube, the Great Radicalizer. The New York Times, vol. 10, p. 2018 (2018)

    Google Scholar 

  21. Verma, S., Gao, R., Shah, C.: Facets of fairness in search and recommendation. In: Borratto, L., Faralli, S., Marras, M., Stilo, G. (eds.) Bias and Social Aspects in Search and Recommendation, First International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings. Communications in Computer and Information Science, vol. 1245, pp. 1–11 (2020). https://doi.org/10.1007/978-3-030-52485-2_1

  22. Wakabayashi, D.: YouTube Moves to Make Conspiracy Videos Harder to Find. The New York Times, 25 Jan 2019. https://www.nytimes.com/2019/01/25/technology/youtube-conspiracy-theory-videos.html

  23. Zhou, R., Khemmarat, S., Gao, L.: The impact of YouTube recommendation system on video views. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 404–410, November 2010

    Google Scholar 

  24. Zhou, R., Khemmarat, S., Gao, L., Wan, J., Zhang, J.: How YouTube videos are discovered and its impact on video views. Multimed. Tools Appl. 75(10), 6035–6058 (2016). https://doi.org/10.1007/s11042-015-3206-0

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded in part by the U.S. National Science Foundation (OIA-1946391, OIA-1920920, IIS-1636933, ACI-1429160, and IIS-1110868), U.S. Office of Naval Research (N00014-10-1-0091, N00014-14-1-0489, N00014-15-P-1187, N00014-16-1-2016, N00014-16-1–2412, N00014-17-1–2675, N00014-17-1-2605, N68335-19-C-0359, N00014-19-1-2336, N68335-20-C-0540, N00014-21-1-2121), U.S. Air Force Research Lab, U.S. Army Research Office (W911NF-17-S-0002, W911NF-16-1-0189), U.S. Defense Advanced Research Projects Agency (W31P4Q-17-C-0059), Arkansas Research Alliance, the Jerry L. Maulden/Entergy Endowment at the University of Arkansas at Little Rock, and the Australian Department of Defense Strategic Policy Grants Program (SPGP) (award number: 2020-106-094). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding organizations. The researchers gratefully acknowledge the support. The researchers also thank MaryEtta Morris for helping with proofreading and improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Kirdemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirdemir, B., Kready, J., Mead, E., Hussain, M.N., Agarwal, N. (2021). Examining Video Recommendation Bias on YouTube. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Advances in Bias and Fairness in Information Retrieval. BIAS 2021. Communications in Computer and Information Science, vol 1418. Springer, Cham. https://doi.org/10.1007/978-3-030-78818-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78818-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78817-9

  • Online ISBN: 978-3-030-78818-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy