Skip to main content

Shadow Data: A Method to Optimize Incremental Synchronization in Data Center

  • Conference paper
  • First Online:
Network and Parallel Computing (NPC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12639))

Included in the following conference series:

  • 1232 Accesses

Abstract

With the continuous increase of data, the data center that plays the role of backup is facing the problem of energy hunger. In practice, to reduce the bandwidth, the local data is synchronized to the data center based on incremental synchronization. In this process, the data center will generate a huge CPU load. To solve this pressure of the data center, first, we analyze the process of the Rsync algorithm, the most commonly used in incremental synchronization, and CDC algorithms, another way of chunking algorithm. Then we propose a data structure called Shadow Data, which greatly reduces the CPU load of the data center by sacrificing part of the hard disk space in the local node.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elahi, B., Malik, A.W., Rahman, A.U., Khan, M.A.: Toward scalable cloud data center simulation using high-level architecture. Softw. Pract. Exp. 50(6), 827-843 (2020)

    Google Scholar 

  2. Tang, X., Wang, F., Tong, L.I., Zhang, P.: Research and implementation of real-time exchange system in data center. Comput. Sci. 70, 104–125 (2017)

    Google Scholar 

  3. Nizam, K.K., Sanja, S., Tapio, N., Nurminen, J.K., Sebastian, V.A., Olli-Pekka, L.: Analyzing the power consumption behavior of a large scale data center. Comput. Sci. Res. Dev. 34, 61–70 (2018)

    Google Scholar 

  4. Zhi, C., Huang, G.: Saving energy in data center networks with traffic-aware virtual machine placement. Inf. Technol. J. 12(19), 5064–5069 (2013)

    Article  Google Scholar 

  5. Tridgell, A.: Effcient algorithms for sorting and synchronization. https://www.samba.org//tridge/phd_thesis.pdf. Accessed February 1999

  6. Chao, Y., Ye, T., Di, M., Shen, S., Wei, M.: A server friendly file synchronization mechanism for cloud storage. In: IEEE International Conference on Green Computing & Communications, IEEE & Internet of Things(2013)

    Google Scholar 

  7. Won, Y., Lim, K., Min, J.: Much: multithreaded content-based file chunking. IEEE Trans. Comput. 64(5), 1375–1388 (2015)

    Google Scholar 

  8. Ma, J., Bi, C., Bai, Y., Zhang, L.: UCDC: unlimited content-defined chunking, a file-differing method apply to file-synchronization among multiple hosts. In: 2016 12th International Conference on Semantics, Knowledge and Grids (SKG), pp. 76–82 (August 2016)

    Google Scholar 

  9. Bjørner, N., Blass, A., Gurevich, Y.: Content-dependent chunking for differential compression, the local maximum approach. J. Comput. Syst. Sci. 76(3–4), 154–203 (2010)

    Article  MathSciNet  Google Scholar 

  10. Zhang, Y., Feng, D., Jiang, H., Xia, W., Fu, M., Huang, F., Zhou, Y.: A fast asymmetric extremum content defined chunking algorithm for data deduplication in backup storage systems. IEEE Trans. Comput. 66(2), 199–211 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Widodo, R.N.S., Lim, H., Atiquzzaman, M.: A new content-defined chunking algorithm for data deduplication in cloud storage. Futur. Gener. Comput. Syst. 71, 145–156 (2017)

    Article  Google Scholar 

  12. Zhang, C., et al.: MII: a novel content defined chunking algorithm for finding incremental data in data synchronization. IEEE Access 7, 86932–86945 (2019)

    Article  Google Scholar 

  13. Zhang, C., Qi, D., Li, W., Guo, J.: Function of content defined chunking algorithms in incremental synchronization. IEEE Access 8, 5316–5330 (2020)

    Article  Google Scholar 

  14. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C., Qi, D., Huang, W. (2021). Shadow Data: A Method to Optimize Incremental Synchronization in Data Center. In: He, X., Shao, E., Tan, G. (eds) Network and Parallel Computing. NPC 2020. Lecture Notes in Computer Science(), vol 12639. Springer, Cham. https://doi.org/10.1007/978-3-030-79478-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79478-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79477-4

  • Online ISBN: 978-3-030-79478-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy