Skip to main content

Arabic Sentiment Analysis Using BERT Model

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2021)

Abstract

Sentiment analysis is the process of determining whether a text or a writing is positive, negative, or neutral. A lot of research has been done to improve the accuracy of sentiment analysis methods, varying from simple linear models to more complex deep neural network models. Lately, the transformer-based model showed great success in sentiment analysis and was considered as the state-of-the-art model for various languages (English, german, french, Turk, Arabic, etc.). However, the accuracy for Arabic sentiment analysis still needs improvements especially in tokenization level during data processing. In fact, the Arabic language imposes many challenges, due to its complex structure, various dialects, and resource scarcity. The improvement of the proposed approach consists of integrating an Arabic BERT tokenizer instead of a basic BERT Tokenizer. Various tests were carried out with different instances (dialect and standard). We used hyperparameters optimization by random search method to obtain the best result with different datasets. The experimental study proves the efficiency of the proposed approach in terms of classification quality and accuracy compared to Arabic BERT and AraBERT models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dragoni, M., Poria, S., Cambria, E.: OntoSenticNet: a commonsense ontology for sentiment analysis. IEEE Intell. Syst. 33(3), 77–85 (2018)

    Article  Google Scholar 

  2. Oueslati, O., Cambria, E., Ben HajHmida, M., Ounelli, H.: A review of sentiment analysis research in Arabic language. Future Generation Comput. Syst. 112, 408–430 (2020)

    Article  Google Scholar 

  3. Abdul-Mageed, M., Diab, M., Korayem, M.: Subjectivity and sentiment analysis of modern standard Arabic. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics Human Language Technologies short papers-Volume 2 Association for Computational Linguistics, pp. 587–591 (2011)

    Google Scholar 

  4. Shoukry, A., Rafea, A.: Sentence-level Arabic sentiment analysis. In: Collaboration Technologies and Systems (CTS) 2012 International Conference on IEEE, pp. 546-550 (2012)

    Google Scholar 

  5. Zaghouani, W.: Critical survey of the freely available Arabic corpora (2017). https://arxiv.org/abs/1702.07835

  6. Imran, A., Faiyaz, M., Akhtar, F.: An enhanced approach for quantitative prediction of personality in Facebook posts. Int. J. Educ. Manage. Eng. (IJEME) 8(2), 8–19 (2018)

    Article  Google Scholar 

  7. Alsayat, A., Elmitwally, N.: A comprehensive study for Arabic sentiment analysis (challenges and applications). Egyptian Inform. J. 21(1), 7–12 (2020). Elsevier

    Article  Google Scholar 

  8. Al-Rubaiee, H., Qiu, R., Li, D.: Identifying Mubasher software products through sentiment analysis of Arabic tweets. In: 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). IEEE, pp. 1–6 (2016)

    Google Scholar 

  9. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)

    Google Scholar 

  10. Ghanem, B., Karoui, J., Benamara, F., Moriceau, V., Rosso, P.: IDAT at FIRE2019: overview of the track on irony detection in Arabic tweets. Proceedings of the 11th Forum for Information Retrieval Evaluation, pp. 10–13 (2019)

    Google Scholar 

  11. Shoukry, A., Rafea, A.: Sentence-level Arabic sentiment analysis. In: Collaboration Technologies and Systems (CTS), 2012 International Conference on IEEE, pp. 546–550 (2012)

    Google Scholar 

  12. Alhumoud, S., Albuhairi, T., Alohaideb, W.: Hybrid sentiment analyser for Arabic tweets using R. In: 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K. IEEE, pp. 417–424 (2015)

    Google Scholar 

  13. Safaya, A., Abdullatif, M., Yuret, D.: KUISAIL at SemEval-2020 Task 12: BERT-CNN for offensive speech identification in social media (2020). arXiv:2007.13184v1 [cs.CL]

  14. ElJundi, O., Antoun, W., El Droubi, N., Hajj, H., El-Hajj, W., Shaban, K.: Hulmona: the universal language model in Arabic. In: Proceedings of the Fourth Arabic Natural Language Processing Workshop. 68–77, (2019)

    Google Scholar 

  15. Antoun, W., Baly, F., and Hajj, H.: AraBERT: transformer-based model for Arabic language understanding (2020). arXiv preprint arXiv:2003.00104

  16. Zahran, M.A., Magooda, A., Mahgoub, A.Y., Raafat, H., Rashwan, M., Atyia, A.: Word representations in vector space and their applications for Arabic. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9041, pp. 430–443. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18111-0_32

    Chapter  Google Scholar 

  17. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of the International Conference on Language Resources and Evaluation, LREC 2018 (2018)

    Google Scholar 

  18. Devlin, J., Chang, Ming-W., Lee, K., Toutanova, Kristina.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, June. Association for Computational Linguistics, vol. 1, pp. 4171–4186 (2019)

    Google Scholar 

  19. Saidi, R., Jarray, F., Mansour, M.: A BERT based approach for Arabic POS tagging. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2021. LNCS, vol. 12861, pp. 311–321. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85030-2_26

    Chapter  Google Scholar 

  20. Attia, M.: Arabic tokenization system. In: Proceedings of the 2007 Workshop on Computational Approaches to Semitic Languages: Common Issues and Resources, pp. 65-72 (2007)

    Google Scholar 

  21. Abdelali, A., Darwish, K., Durrani, N., Mubarak, H.: Farasa: a fast and furious segmenter for Arabic. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. Association for Computational Linguistics, pp. 11–16 (2016). https://www.aclweb.org/anthology/N16-3003https://doi.org/10.18653/v1/N16-3003

  22. Nabil, M., Aly, M., Atiya, A.: ASTD: Arabic sentiment tweets dataset. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2515-2519 (2015)

    Google Scholar 

  23. Elnagar, A., Khalifa, Y.S., Einea, A.: Hotel Arabic-reviews dataset construction for sentiment analysis applications. In: Shaalan, K., Hassanien, A.E., Tolba, F. (eds.) Intelligent Natural Language Processing: Trends and Applications. SCI, vol. 740, pp. 35–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67056-0_3

    Chapter  Google Scholar 

  24. Aly, M., Atiya, A.: LABR: A Large Scale Arabic Book Reviews Dataset. Sofia, Bulgaria, Meetings of the Association for Computational Linguistics (ACL) At (2013)

    Google Scholar 

  25. Alomari, K.M., ElSherif, H.M., Shaalan, K.: Arabic tweets sentimental analysis using machine learning. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10350, pp. 602–610. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60042-0_66

    Chapter  Google Scholar 

  26. Baly, R., Khaddaj, A., Hajj, H., El-Hajj, W., Shaban, B.: Arsentd-lev: a multi-topic corpus for target-based sentiment analysis in Arabic levantine tweets (2019). arXiv preprint arXiv:1906.01830

  27. Eskander, R., Rambow, O.: SLSA: a sentiment lexicon for standard Arabic. EMNLP 2545–2550 (2015)

    Google Scholar 

  28. Abdelghani, D., Mohamed, A.E., Junwei, Z.: Arabic sentiment classification using convolutional neural network and differential evolution algorithm. Comput. Intell. Neurosci. (2019)

    Google Scholar 

  29. Harrat, S., Meftouh, K., Smaili, K.: Machine translation for Arabic dialects (survey). Inf. Process. Manage. 56(2), 262–273 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hasna Chouikhi or Fethi Jarray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chouikhi, H., Chniter, H., Jarray, F. (2021). Arabic Sentiment Analysis Using BERT Model. In: Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2021. Communications in Computer and Information Science, vol 1463. Springer, Cham. https://doi.org/10.1007/978-3-030-88113-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88113-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88112-2

  • Online ISBN: 978-3-030-88113-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy