Abstract
Secure-channel establishment allows two endpoints to communicate confidentially and authentically. Since they hide all data sent across them, good or bad, secure channels are often subject to mass surveillance in the name of (inter)national security. Some protocols are constructed to allow easy data interception . Others are designed to preserve data privacy and are either subverted or prohibited to use without trapdoors.
We introduce \(\mathsf {LIKE}\), a primitive that provides secure-channel establishment with an exceptional, session-specific opening mechanism. Designed for mobile communications, where an operator forwards messages between the endpoints, it can also be used in other settings. \(\mathsf {LIKE}\) allows Alice and Bob to establish a secure channel with respect to n authorities. If the authorities all agree on the need for interception, they can ensure that the session key is retrieved. As long as at least one honest authority prohibits interception, the key remains secure; moreover \(\mathsf {LIKE}\) is versatile with respect to who learns the key. Furthermore, we guarantee non-frameability: nobody can falsely incriminate a user of taking part in a conversation; and honest-operator: if the operator accepts a transcript as valid, then the key retrieved by the authorities is the key that Alice and Bob should compute. Experimental results show that our protocol can be efficiently implemented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
MCL (2020). https://github.com/herumi/mcl
3GPP: TS 33.106 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G security; Lawful interception requirements (R. 15), June 2018
3GPP: TS 33.126 3GPP; Technical Specification Group Services and System Aspects; Security; Lawful Interception requirements (R. 16), September 2019
3GPP: TS 33.127 3GPP; Technical Specification Group Services and System Aspects; Security; Lawful Interception (LI) Architecture and Functions (R. 16), March 2020
3GPP: TS 33.128 3GPP; Technical Specification Group Services and System Aspects; Security; Protocol and procedures for Lawful Interception (LI); Stage 3 (R. 16), March 2020
Abelson, H., et al.: Keys under doormats. Commun. ACM 58(10), 24–26 (2015)
Arfaoui, G., et al.: Legally keeping secrets from mobile operators: lawful interception key exchange (LIKE). IACR ePrint (2020). https://eprint.iacr.org/2020/684
Azfar, A.: Implementation and performance of threshold cryptography for multiple escrow agents in VoIP. In: Proceedings of SPIT/IPC, pp. 143–150 (2011)
Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryptol. 32, 1298–1336 (2019)
Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-48071-4_28
Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: CCS 1997. ACM (1997)
Bellare, M., Rivest, R.L.: Translucent cryptography - an alternative to key escrow, and its implementation via fractional oblivious transfer. J. Cryptol. 12(2) (1999)
Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48329-2_21
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. In: Proceedings of CHES 2011, pp. 124–142 (2011)
Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_3
Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252
Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11818175_5
Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7
Chen, L., Gollmann, D., Mitchell, C.J.: Key escrow in mutually mistrusting domains. In: Proceedings of Security Protocols, pp. 139–153 (1996)
Chen, M.: Escrowable identity-based authenticated key agreement in the standard model. Chin. Electron. J. 43, 1954–1962 (10 2015)
Comey, J. (FBI) (2014). https://www.fbi.gov/news/speeches/going-dark-are-technology-privacy-and-public-safety-on-a-collision-course
Denning, D.E., Branstad, D.K.: A taxonomy for key escrow encryption systems. Commun. ACM 39(3) (1996)
Desmedt, Y.: Abuses in cryptography and how to fight them. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 375–389. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_29
EU: Draft council resolution on encryption - security through encryption and security despite encryption (2020). https://files.orf.at/vietnam2/files/fm4/202045/783284_fh_st12143-re01en20_783284.pdf
FairTrials (2020). https://www.fairtrials.org/news/short-update-police-germany-defend-use-contact-tracing-criminal-investigations
Fan, Q., Zhang, M., Zhang, Y.: Key escrow scheme with the cooperation mechanism of multiple escrow agents (2012)
Franceschi-Bicchierai, L.: The 10 biggest revelations from Edward Snowden’s leaks (2014). https://mashable.com/2014/06/05/edward-snowden-revelations/?europe=true
IETF: Pairing-friendly curves (2020). https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/
Kahney, L.: The FBI wanted a back door to the iPhone. Tim cook said no (2019). https://www.wired.com/story/the-time-tim-cook-stood-his-ground-against-fbi/
Kilian, J., Leighton, F.T.: Fair Cryptosystems, revisited: a rigorous approach to key-escrow (extended abstract). In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 208–221. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_17
Long, Y., Cao, Z., Chen, K.: A dynamic threshold commercial key escrow scheme based on conic. Appl. Math. Comput. 171(2), 972–982 (2005)
Long, Y., Chen, K., Liu, S.: Adaptive chosen ciphertext secure threshold key escrow scheme from pairing. Informatica Lith. Acad. Sci. 17(4), 519–534 (2006)
Martin, K.M.: Increasing efficiency of international key escrow in mutually mistrusting domains. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 221–232. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024467
Micali, S.: Fair public-key cryptosystems. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 113–138. Springer, Heidelberg. https://doi.org/10.1007/3-540-48071-4_9
Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_22
Museum, C.: Clipper chip. https://www.cryptomuseum.com/crypto/usa/clipper.htm
Ni, L., Chen, G., Li, J.: Escrowable identity-based authenticated key agreement protocol with strong security. Comput. Math. Appl. 65(9), 1339–1349 (2013)
Schnorr, C.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1989). https://doi.org/10.1007/0-387-34805-0_22
Shamir, A.: Partial key escrow: a new approach to software key escrow. Presented at Key Escrow Conference (1995)
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-39568-7_5
UN (1948). https://www.un.org/en/universal-declaration-human-rights/
Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
Wang, Z., Ma, Z., Luo, S., Gao, H.: Key escrow protocol based on a tripartite authenticated key agreement and threshold cryptography. IEEE Access 7, 149080–149096 (2019)
Wright, C.V., Varia, M.: Crypto crumple zones: enabling limited access without mass surveillance. In: Proceedings of EuroS&P 2018. IEEE (2018)
Young, A.L., Yung, M.: Kleptography from standard assumptions and applications. In: Proceedings of SCN, pp. 271–290 (2010)
Acknowledgement
Ghada Arfaoui, Olivier Blazy, Pierre-Alain Fouque, and Cristina Onete are grateful for the support of the ANR, through project ANR MobiS5 (ANR-18-CE39-0019).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Appendices
A Model Complements
Definition 10
(Correctness). Let \(\lambda \) a security parameter and n an integer. Run \(\mathsf {pp} \leftarrow \mathsf {Setup} (1^\lambda )\), \((\mathsf {A}.\mathsf {PK},\) \(\mathsf {A}.\mathsf {SK})\) \( \leftarrow \) \(\mathsf {{U}KeyGen} (\mathsf {pp})\), \((\mathsf {B}.\mathsf {PK},\) \(\mathsf {B}.\mathsf {SK})\) \(\leftarrow \) \(\mathsf {{U}KeyGen} (\mathsf {pp})\), \((\mathsf {O} _\mathsf {A}.\mathsf {PK},\mathsf {O} _\mathsf {A}.\mathsf {SK})\) \(\leftarrow \) \(\mathsf {{O}KeyGen} (\mathsf {pp})\), \((\mathsf {O} _\mathsf {B}.\mathsf {PK},\) \(\mathsf {O} _\mathsf {B}.\mathsf {SK})\) \(\leftarrow \) \(\mathsf {{O}KeyGen} (\mathsf {pp})\). For all \(i \in \llbracket 1,n \rrbracket \),
\((\varLambda _{i}.\mathsf {PK},\varLambda _{i}.\mathsf {SK})\leftarrow \mathsf {{A}KeyGen} (\mathsf {pp})\). Let \(\mathsf {APK} \leftarrow (\varLambda _{i}.\mathsf {PK})_{i=1}^n \). Then:
-
\(\mathsf {PK}_{\mathsf {A} \rightarrow \mathsf {B}} \leftarrow (\mathsf {pp}, \mathsf {A}.\mathsf {PK}, \mathsf {B}.\mathsf {PK},\mathsf {APK})\);
-
\( (\mathsf {k} _\mathsf {A}, \mathsf {sst} _\mathsf {A}, \mathsf {sst} _\mathsf {B}, \mathsf {k} _\mathsf {B}) \leftarrow \)
\(\mathsf {AKE} {}\langle \mathsf {A} (\mathsf {A}.\mathsf {SK}),\ \mathsf {O} _\mathsf {A} (\mathsf {O} _\mathsf {A}.\mathsf {SK}),\mathsf {O} _\mathsf {B} (\mathsf {O} _\mathsf {B}.\mathsf {SK}),\mathsf {B} (\mathsf {B}.\mathsf {SK})\rangle (\mathsf {PK}_{\mathsf {A} \rightarrow \mathsf {B}}) \);
-
\(\mathsf {b} _\mathsf {A} \leftarrow \mathsf {Verify} (\mathsf {pp},\mathsf {sst} _\mathsf {A}, \mathsf {A}.\mathsf {PK}, \mathsf {B}.\mathsf {PK}, \mathsf {O} _\mathsf {A}.\mathsf {PK}, \mathsf {APK})\);
-
For all i in \( \llbracket 1,n \rrbracket \), \(\varLambda _{i}.t_\mathsf {A} \leftarrow \mathsf {TDGen} (\mathsf {pp},\varLambda _{i}.\mathsf {SK},\mathsf {sst} _\mathsf {A})\);
-
\(\mathsf {k} ^*_\mathsf {A} \leftarrow \mathsf {Open} (\mathsf {pp},\mathsf {sst} _\mathsf {A}, (\varLambda _{i}.\mathsf {PK})_{i=1}^n, (\varLambda _{i}.t_\mathsf {A})_{i=1}^{n})\);
-
\(\mathsf {b} _\mathsf {B} \leftarrow \mathsf {Verify} (\mathsf {pp},\mathsf {sst} _\mathsf {B}, \mathsf {A}.\mathsf {PK}, \mathsf {B}.\mathsf {PK}, \mathsf {O} _\mathsf {B}.\mathsf {PK}, \mathsf {APK})\);
-
For all i in \(\llbracket 1,n \rrbracket \), \(\varLambda _{i}.t_\mathsf {B} \leftarrow \mathsf {TDGen} (\mathsf {pp},\varLambda _{i}.\mathsf {SK},\mathsf {sst} _\mathsf {B})\);
-
\(\mathsf {k} ^*_\mathsf {B} \leftarrow \mathsf {Open} (\mathsf {pp},\mathsf {sst} _\mathsf {B}, \mathsf {APK}, (\varLambda _{i}.t_\mathsf {B})_{i=1}^{n})\).
For any \((\mathsf {b} _\mathsf {A}, \mathsf {b} _\mathsf {B}, \mathsf {k} _\mathsf {A}, \mathsf {k} _\mathsf {A} ^* , \mathsf {k} _\mathsf {B}, \mathsf {k} _\mathsf {B} ^*)\) generated as above: \(\mathsf {Pr}[\mathsf {b} _\mathsf {A} = \mathsf {b} _\mathsf {B} =1 \wedge \mathsf {k} _\mathsf {A} = \mathsf {k} _\mathsf {A} ^* = \mathsf {k} _\mathsf {B} = \mathsf {k} _\mathsf {B} ^*] = 1.\)
B Proof Sketches
Our main theorem includes three statements; we prove these in order below.
First Statement: KS. We begin by proving that the adversary has a negligible probability of winning the key-security experiment by querying the oracle \(\mathsf {{Test}} \) on an instance that matches no other instance. Notably, if the tested instance does not abort the protocol, the adversary will have to break the EUF-CMA of the signature scheme to generate the expected signatures without using a matching session.
Thus, the targeted instance must have a matching one. By key-freshness, \(\mathcal {A}\) must test a key generated by two honest users, such that the trapdoor of at least one honest authority has never been queried to the oracle \(\mathsf {{RevealTD}} \). We prove (by a reduction) that \(\mathcal {A}\) can only win by breaking the BDDH assumption. Let \((W_*,X_*,Y_*,W'_*,X'_*,Y'_*,Z_*)\) be a BDDH instance. We set \(W_*\) as the part of the public key \(\varLambda _{}.\mathsf {pk} \) of the honest authority, and we set \(X_2\) as \(X'_*\), \(X_1\) as \(X_*\) and Y as \(Y'_*\) for the session that matches the tested instance. Then, we build the key as follows, where \(\varLambda _{} \) is the honest authority: \(\mathsf {k} \leftarrow Z_* \prod _{i=1;\varLambda _{i} \not = \varLambda _{}}^{n} e(X_*,Y'_* )^{\varLambda _{i}.\mathsf {SK}}.\) To compute the secret keys of the authorities controlled by the adversary, we run the extractor on the proofs of knowledge of the discrete logarithm of the public keys \(\varLambda _{i}.\mathsf {PK} \). If \(Z_*\) is a random value, \(\mathsf {k} \) will be random for the adversary, else \(Z_*=e(X_*,Y'_* )^{\varLambda _{}.\mathsf {SK}}\). Moreover, we simulate the oracle \(\mathsf {{RevealTD}} \) on sessions with values X and Y chosen by the adversary by using the extractor on the signatures of knowledge of their discrete logarithms.
Second Statement: NF. To win the non-frameability experiment, the adversary has to build a valid session state \(\mathsf {sst} \) for a given user, containing a valid signature of this user. We prove this theorem by reduction: assuming that an adversary is able to break the non-frameability, since this adversary generates a valid signature for a user, we can use it to break the EUF-CMA security.
Third Statement: HO. The first step of the HO proof is to design a key extractor, which takes in input a session state \(\mathsf {sst}\) , brute-forces the discrete logarithm of Bob’s Y, then computes the key as Bob would: \( \mathsf {k} = e\left( \prod _{i=1}^n \varLambda _{i}.\mathsf {pk},X_2 \right) ^y.\) Our goal is to prove that this is the key the authorities would retrieve.
We first show (by reduction) that the adversary can only build by itself a valid \(\mathsf {sst} \) (that may match a fake authority set) with negligible probability. Namely, if an adversary can output valid signatures for an honest operator, then we can use it to break the EUF-CMA of the signature scheme.
Moreover, for any authority \(\varLambda _{} \) and any values \(X_1\) and Y, the proof of knowledge of a trapdoor ensures that \(g_1^{{\varLambda _{}}.\mathsf {SK}}=\varLambda _{}.\mathsf {pk} \) and \(\varLambda _{}.t_1=e(X_1,Y)^{{\varLambda _{}}.\mathsf {SK}}\), which implies that \(\varLambda _{}.t_1=e(\varLambda _{}.\mathsf {pk},X_2)^y\) and: \( \mathsf {k} _* = \prod _{i=1}^n\varLambda _{i}.t_1 = e\left( \prod _{i=1}^n \varLambda _{i}.\mathsf {pk},X_2 \right) ^y.\) Thus, to win the HO experiment (and return a key such that \(\mathsf {k} \not = \mathsf {k} _*\)), the adversary must produce a proof on a false statement, which happens with negligible probability.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Arfaoui, G. et al. (2021). How to (Legally) Keep Secrets from Mobile Operators. In: Bertino, E., Shulman, H., Waidner, M. (eds) Computer Security – ESORICS 2021. ESORICS 2021. Lecture Notes in Computer Science(), vol 12972. Springer, Cham. https://doi.org/10.1007/978-3-030-88418-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-88418-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88417-8
Online ISBN: 978-3-030-88418-5
eBook Packages: Computer ScienceComputer Science (R0)