Skip to main content

Virtual Adjustable Joint Stiffness Toward a Safer Human/Robot Interaction

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2020)

Abstract

Modern robotic applications have come to include an increasing human presence in their control loops. This human presence sheds light on two instances of human interaction. First, intentional interaction developed for cobotic applications, and on the other hand, unplanned interaction in the event of a sudden collision. The handling of these interactions must be subject to the human safety restrictions denoted in the Physical Human-Robot Interaction (pHRI). The literature has presented two techniques for improving this safety factor; the first is a mechanical solution, while the second is related to control systems. In this paper, we describe a new approach that combines previous solutions. Our proposal explores a control scheme that involves the use of a virtual, adjustable stiffness component supposed to be located between the motor shaft and the robot’s link. This scheme proposes a variable impedance Actuator (VIA) control methodology based on the integration of a hypothetical (virtual) component, which has (reflect) an intrinsic Series Elastic Actuator (SEA) behaviour. By combining the mechanical operating principle with the control approach, this new method is likely to be beneficial for minimizing injuries in a human/robot interaction by reducing impact forces in collaborative applications. The proof of concept for this proposal has been simulated, validated, and implementable using a UR3 cobot of Universal Robots. This approach shows promising results in reducing significantly the peak collision forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ansarieshlaghi, F., Eberhard, P.: Hybrid force/position control of a very flexible parallel robot manipulator in contact with an environment. In: ICINCO 2019 -Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 2, pp. 59–67 (2019)

    Google Scholar 

  2. Bissell, C.C.: Springer Handbook of Automation. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-78831-7. Nof, S.Y. (ed.)

  3. Siciliano, B., Khatib, O. (eds.): Choice Reviews Online Springer Handbook of Robotics, vol. 46. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-540-30301-5

  4. Collet, A., Berenson, D., Srinivasa, S.S., Ferguson, D.: Object recognition and full pose registration from a single image for robotic manipulation, pp. 48–55 (2009)

    Google Scholar 

  5. Diab, J., Fonte, A., Poisson, G., Novales, C.: PHRI safety control using a virtual flexible joint approach. In: Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics, ICINCO, pp. 262-271 (2020). https://doi.org/10.5220/0009777702620271. ISBN 978-989-758-442-8, ISSN 2184-2809

  6. Ebert, D.M., Henrich, D.D.: Safe human-robot-cooperation: image-based collision detection for industrial robots. In: IEEE International Conference on Intelligent Robots and Systems, vol. 2, pp. 1826–1831, October 2002

    Google Scholar 

  7. Forget, F., et al.: Implementation, identification and control of an efficient electric actuator for humanoid robots. In: ICINCO 2018 - Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (Icinco), vol. 2, pp. 29–38 (2018)

    Google Scholar 

  8. Haddadin, S., Albu-Schäffer, A., De Luca, A., Hirzinger, G.: Collision detection and reaction: a contribution to safe physical human-robot interaction. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 3356–3363 (2008)

    Google Scholar 

  9. Kagami, S., et al.: Humanoid arm motion planning using stereo vision and RRT search. In: IEEE International Conference on Intelligent Robots and Systems, vol. 3, pp. 2167–2172, October 2003

    Google Scholar 

  10. Khalil, W., Kleinfinger, J.: A new geometric notation for open and closed-loop robots. In: 1986 Proceedings of IEEE International Conference on Robotics and Automation, pp. 1174–1179. Institute of Electrical and Electronics Engineers (1986). http://ieeexplore.ieee.org/document/1087552/

  11. Kufieta, K.: Force estimation in robotic manipulators: modeling, simulation and experiments, p. 144 (2014)

    Google Scholar 

  12. Lenzi, T., et al.: NEUROExos: a variable impedance powered elbow exoskeleton. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 1419–1426 (2011)

    Google Scholar 

  13. De Luca, A.: Feedforward/feedback laws for the control of flexible robots. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 1, pp. 233–240, April 2000

    Google Scholar 

  14. De Luca, A., Albu-Schäffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1623–1630 (2006)

    Google Scholar 

  15. De Luca, A., Mattone, R.: Sensorless robot collision detection and hybrid force/motion control. In: Proceedings - IEEE International Conference on Robotics and Automation 2005, pp. 999–1004, April 2005

    Google Scholar 

  16. Maples, J.A., Becker, J.J.: Experiments in force control of robotic manipulators, pp. 695–702 (1986)

    Google Scholar 

  17. Martinoli, A., Mondada, F., Correll, N., Mermoud, G.: STAR Springer Tracts in Advanced Robotics Springer Tracts in Advanced Robotics: Preface, vol. 83. Springer, Heidelberg (2012)

    Google Scholar 

  18. Morikawa, S., Senoo, T., Namiki, A., Ishikawa, M.: Realtime collision avoidance using a robot manipulator with light-weight small high-speed vision systems. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 794–799, April 2007

    Google Scholar 

  19. Navarro, B., et al.: An ISO10218-compliant adaptive damping controller for safe physical human-robot interaction. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016-June, pp. 3043–3048 (2016)

    Google Scholar 

  20. Navarro B., Fonte A., Fraisse Ph., Poisson G., Cherubini A.: Physical human-robot interaction with the OpenPHRI library. To cite this version: HAL Id: Hal-01823337 Physical Human-Robot Interaction with the OpenPHRI Library Two-Layer Safe Damping Control Framework (2018)

    Google Scholar 

  21. Nelson, C.A., Nouaille, L., Poisson, G.: Advances in Mechanism and Machine Science, vol. 73. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-20131-9

    Book  Google Scholar 

  22. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 399–406 (1995)

    Google Scholar 

  23. Radomirovic, D., Kovacic, I.: Deflection and potential energy of linear and nonlinear springs: approximate expressions in terms of generalized coordinates. Eur. J. Phys. 34(3), 537–546 (2013)

    Article  Google Scholar 

  24. République Francaise: Guide de Prévention à Destination Des Fabricants et Des Utilisateurs Pour La Mise En Oeuvre Des Applications Collaboratives Robotisées-Edition 2017. Ministère du travail (2017). https://travail-emploi.gouv.fr/IMG/pdf/guide de prevention 25aout2017.pdf

  25. Haddadin, S., Croft, E.: Handbook of robotics: physical human-robot interaction. In: Handbook of Robotics, pp. 1835–1874 (2008)

    Google Scholar 

  26. Schüthe, D., Wenk, F., Frese, U.: Dynamics calibration of a redundant flexible joint robot based on gyroscopes and encoders. In: ICINCO 2016 - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 1, pp. 335–346 (2016)

    Google Scholar 

  27. Sebastián Arévalo, J.S., Laribi, M.A., Zeghloul, S., Arsicault, M.: On the design of a safe human-friendly teleoperated system for doppler sonography. Robotics 8(2), 29 (2019)

    Article  Google Scholar 

  28. Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control Trans. ASME 109(4), 310–319 (1987)

    Article  Google Scholar 

  29. Tonietti, G., Schiavi, R., Bicchi, A.: Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: Proceedings -IEEE International Conference on Robotics and Automation 2005, pp. 526–531, April 2005

    Google Scholar 

  30. Universal-Robots: Ur Parameters for Kinematics and Dynamics Calculations (2012). https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/parameters-for-calculations-of-kinematics-and-dynamics-45257/

  31. Vanderborght, B., et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013). http://dx.doi.org/10.1016/j.robot.2013.06.009

  32. Whitney, D.E.: Historical perspective and state of the art in robot force control. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 262–268 (1985)

    Google Scholar 

  33. Zeng, G., Hemami, A.: An overview of robot force control. Robotica 15(5), 473–482 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aïcha Fonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diab, J., Fonte, A., Novales, C., Poisson, G. (2022). Virtual Adjustable Joint Stiffness Toward a Safer Human/Robot Interaction. In: Gusikhin, O., Madani, K., Zaytoon, J. (eds) Informatics in Control, Automation and Robotics. ICINCO 2020. Lecture Notes in Electrical Engineering, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-030-92442-3_16

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy