Skip to main content

Streaming Submodular Maximization Under Differential Privacy Noise

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Abstract

The era of big data has brought the need of fast data stream analysis. Recently the problem of streaming submodular optimization has attracted much attention due to the importance of both submodular functions and streaming analytics. However, in real practical setting, streaming data often comes with noise which causes difficulties in analysing and optimizing submodular functions. In this paper, we study the problem of submodular maximization with cardinality constraint under a noisy streaming model, where the impact of noise is assumed to be small as inspired by the framework of differential privacy (so we also call it DP noise). For this problem, we eventually give a worst-case approximation ratio of \(\frac{1}{\left( 2+\left( 1+\frac{1}{k}\right) ^{2}\right) \left( 1+\frac{1}{k}\right) }-\delta \) in one pass. To complement the theoretical analysis, we also conduct experiments across real datasets to show our algorithm outperforms the baseline streaming methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: Massive data summarization on the fly. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 671–680 (2014)

    Google Scholar 

  2. Belloni, A., Liang, T., Narayanan, H., Rakhlin, A.: Escaping the local minima via simulated annealing: optimization of approximately convex functions. In: Conference on Learning Theory, pp. 240–265. PMLR (2015)

    Google Scholar 

  3. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Disc. 30(4), 891–927 (2016)

    Google Scholar 

  4. Dal Pozzolo, A., Caelen, O., Johnson, R.A., Bontempi, G.: Calibrating probability with undersampling for unbalanced classification. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 159–166. IEEE (2015)

    Google Scholar 

  5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)

    Article  Google Scholar 

  6. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  7. Feldman, D., Fiat, A., Kaplan, H., Nissim, K.: Private coresets. In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, pp. 361–370 (2009)

    Google Scholar 

  8. Gomes, R., Krause, A.: Budgeted nonparametric learning from data streams. In: Fürnkranz, J., Joachims, T. (eds.), Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June, Haifa, Israel, pp. 391–398. Omnipress (2010)

    Google Scholar 

  9. Gupta, A., Ligett, K., McSherry, F., Roth, A., Talwar, K.: Differentially private combinatorial optimization. In: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1106–1125. SIAM (2010)

    Google Scholar 

  10. Hassidim, A., Singer, Y.: Submodular optimization under noise. In: Conference on Learning Theory, pp. 1069–1122. PMLR (2017)

    Google Scholar 

  11. Horel, T., Singer, Y.: Maximization of approximately submodular functions. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.), Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, pp. 3045–3053, 5–10 December, Barcelona, Spain (2016)

    Google Scholar 

  12. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

    Article  MathSciNet  Google Scholar 

  13. Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S. and Karbasi, A.: Submodular streaming in all its glory: tight approximation, minimum memory and low adaptive complexity. In: International Conference on Machine Learning, pp. 3311–3320. PMLR (2019)

    Google Scholar 

  14. Kotz, S., Kozubowski, T. and Podgòrski, K.: The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Springer, Cham (2012)

    Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), 15–19 December, Pisa, Italy, pp. 413–422. IEEE Computer Society (2008)

    Google Scholar 

  16. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular maximization: personalized data summarization. In: International Conference on Machine Learning, pp. 1358–1367. PMLR (2016)

    Google Scholar 

  17. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions - I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  18. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 75–84 (2007)

    Google Scholar 

  19. Qian, C., Shi, J.C., Yu, Y., Tang, K., Zhou, Z.H.: Subset selection under noise. In: NIPS, pp. 3560–3570 (2017)

    Google Scholar 

  20. Sarathy, R., Muralidhar, K.: Evaluating Laplace noise addition to satisfy differential privacy for numeric data. Trans. Data Priv. 4(1), 1–17 (2011)

    MathSciNet  Google Scholar 

  21. Singer, Y., Vondrák, J.: Information-theoretic lower bounds for convex optimization with erroneous oracles. Adv. Neural Inf. Process. Syst. 28, 3204–3212 (2015)

    Google Scholar 

  22. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 11(1), 37–57 (1985)

    Article  MathSciNet  Google Scholar 

  23. Yang, R., Xu, D., Cheng, Y., Gao, C., Du, D.Z.: Streaming submodular maximization under noises. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 348–357. IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

The authors are supported by Natural Science Foundation of China (No. 61772005), Outstanding Youth Innovation Team Project for Universities of Shandong Province (No. 2020KJN008), Natural Science Foundation of Fujian Province (No. 2020J01845) and Educational Research Project for Young and Middle-aged Teachers of Fujian Provincial Department of Education (No. JAT190613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longkun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, D., Guo, L., Liao, K., Yao, P. (2021). Streaming Submodular Maximization Under Differential Privacy Noise. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy