Skip to main content

A Lightweight Android Malware Detection Framework Based on Knowledge Distillation

  • Conference paper
  • First Online:
Network and System Security (NSS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13041))

Included in the following conference series:

  • 1104 Accesses

Abstract

Android system is used by a large number of people due to its good operating experience. Following this, the number of malware has risen sharply, and security problems have become more serious. Program analysis technology combined with deep learning to identify malicious applications has become a research central. Most of the existing malware identification frameworks are deployed in the cloud due to the scale and complexity of their models. However, its functions are limited due to network delays, bandwidth, and user privacy information will be leaked. In this paper, we propose a dynamic malware identification framework for mobile terminals. The framework has a customized lightweight deep learning model and we use knowledge distillation to optimize the model. This method effectively avoids the leakage of user privacy due to deployment on mobile devices, and can effectively classify applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Dea, S.: Smartphone OS shipment market share worldwide 2020–2025 [EB/OL]. https://www.idc.com. Accessed 8 July 2021

  2. iJiami. National mobile app security situation research report [EB/OL]. https://www.freebuf.com/articles/network/235337.html. Accessed 8 July 2021

  3. Wang, W., Zhao, M., Wang, J.: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. J. Ambient. Intell. Humaniz. Comput. 10(8), 3035–3043 (2018). https://doi.org/10.1007/s12652-018-0803-6

    Article  Google Scholar 

  4. Luo, S., Liu, Z., Ni, B., Wang, H., Sun, H., Yuan, Y.: Android malware analysis and detection based on attention-CNN-LSTM. J. Comput. 14(1), 31–44 (2019)

    Google Scholar 

  5. Xin, S., Shi, W., Xilong, Q., Zheng, Y., Liu, X.: DroidDeep: using deep belief network to characterize and detect android malware. Soft Comput. 24, 1–14 (2020). https://doi.org/10.1007/s00500-019-04589-w

    Article  Google Scholar 

  6. Fan, M., Liu, J., Wang, W., Li, H., Tian, Z., Liu, T.: DAPASA: detecting android piggybacked apps through sensitive subgraph analysis. IEEE Trans. Inf. Forensics Secur. 12(8), 1772–1785 (2017)

    Article  Google Scholar 

  7. Martín, A., Fuentes-Hurtado, F., Naranjo, V., Camacho, D.: Evolving deep neural networks architectures for android malware classification. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1659–1666. IEEE (2017)

    Google Scholar 

  8. Faruki, P., Buddhadev, B., Shah, B., Zemmari, A., Laxmi, V., Gaur, M.S.: DroidDivesDeep: android malware classification via low level monitorable features with deep neural networks. In: Nandi, S., Jinwala, D., Singh, V., Laxmi, V., Gaur, M.S., Faruki, P. (eds.) ISEA-ISAP 2019. CCIS, vol. 939, pp. 125–139. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-7561-3_10

    Chapter  Google Scholar 

  9. Yeh, C.W., Yeh, W.T., Hung, S.H., Lin, C.T.: Flattened data in convolutional neural networks: Using malware detection as case study. In: Proceedings of the International Conference on Research in Adaptive and Convergent Systems, pp. 130–135 (2016)

    Google Scholar 

  10. Feng, P., Ma, J., Sun, C., Xinpeng, X., Ma, Y.: A novel dynamic android malware detection system with ensemble learning. IEEE Access 6, 30996–31011 (2018)

    Article  Google Scholar 

  11. Fasano, F., Martinelli, F., Mercaldo, F., Santone, A.: Energy consumption metrics for mobile device dynamic malware detection. Procedia Comput. Sci. 159, 1045–1052 (2019)

    Article  Google Scholar 

  12. Ferrante, A., Medvet, E., Mercaldo, F., Milosevic, J., Visaggio, C.A.: Spotting the malicious moment: characterizing malware behavior using dynamic features. In: 2016 11th International Conference on Availability, Reliability and Security (ARES), pp. 372–381. IEEE (2016)

    Google Scholar 

  13. Martinelli, F., Mercaldo, F., Saracino, A.: Bridemaid: an hybrid tool for accurate detection of android malware. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 899–901 (2017)

    Google Scholar 

  14. Xiao, X., Zhang, S., Mercaldo, F., Hu, G., Sangaiah, A.K.: Android malware detection based on system call sequences and LSTM. Multimed. Tools Appl. 78(4), 3979–3999 (2019). https://doi.org/10.1007/s11042-017-5104-0

    Article  Google Scholar 

  15. Gharib, A., Ghorbani, A.: DNA-Droid: a real-time android ransomware detection framework. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.) NSS 2017. LNCS, vol. 10394, pp. 184–198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64701-2_14

    Chapter  Google Scholar 

  16. Zhu, D., Xi, T., Jing, P., Wu, D., Xia, Q., Zhang, Y.: A transparent and multimodal malware detection method for android apps. In: Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 51–60 (2019)

    Google Scholar 

  17. Li, D., Zhao, L., Cheng, Q., Ning, L., Shi, W.: Opcode sequence analysis of android malware by a convolutional neural network. Concurr. Comput.: Pract. Exp. 32(18), e5308 (2020)

    Google Scholar 

  18. Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., Zheng, Q.: IMCFN: image-based malware classification using fine-tuned convolutional neural network architecture. Comput. Netw. 171, 107138 (2020)

    Article  Google Scholar 

  19. Nauman, M., Tanveer, T.A., Khan, S., Syed, T.A.: Deep neural architectures for large scale android malware analysis. Cluster Comput. 21(1), 569–588 (2018). https://doi.org/10.1007/s10586-017-0944-y

    Article  Google Scholar 

  20. Xiao, X., Wang, Z., Li, Q., Xia, S., Jiang, Y.: Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting android malware with system call sequences. IET Inf. Secur. 11(1), 8–15 (2016)

    Article  Google Scholar 

  21. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  23. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  24. Mahdavifar, S., Kadir, A.F.A., Fatemi, R., Alhadidi, D., Ghorbani, A.A.: Dynamic android malware category classification using semi-supervised deep learning. In: 2020 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 515–522. IEEE (2020)

    Google Scholar 

  25. Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark android malware datasets and classification. In: 2018 International Carnahan Conference on Security Technology (ICCST), pp. 1–7. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhi, Y., Xi, N., Liu, Y., Hui, H. (2021). A Lightweight Android Malware Detection Framework Based on Knowledge Distillation. In: Yang, M., Chen, C., Liu, Y. (eds) Network and System Security. NSS 2021. Lecture Notes in Computer Science(), vol 13041. Springer, Cham. https://doi.org/10.1007/978-3-030-92708-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92708-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92707-3

  • Online ISBN: 978-3-030-92708-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy