Skip to main content

Deep Learning on Side-Channel Analysis

  • Chapter
  • First Online:
Security and Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13049))

  • 2035 Accesses

Abstract

This chapter provides an overview of recent applications of deep learning to profiled side-channel analysis (SCA). The advent of deep neural networks (mainly multiple layer perceptrons and convolutional neural networks) as a learning algorithm for profiled SCA opened several new directions and possibilities to explore the occurrence of side-channel leakages from different categories of systems. This is particularly important for designers to verify to what extent an adversary can extract sensitive information when possessing state-of-the-art attack methods. Deep learning is a fast-evolving technology that provides several advantages in profiled SCA and we summarize what are the main directions and results obtained by the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 43.19
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  2. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_1

    Chapter  Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS One 10(7), e0130140 (2015)

    Google Scholar 

  4. Bergstra, J., Bardenet, R., Kégl, B., Bengio, Y.: Algorithms for hyper-parameter optimization, December 2011

    Google Scholar 

  5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  7. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - Profiling Attacks Without Preprocessing. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  8. Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 132–161 (2019). https://doi.org/10.13154/tches.v2019.i2.132-161, https://tches.iacr.org/index.php/TCHES/article/view/7388

  9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  11. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17

    Chapter  Google Scholar 

  12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, 1st edn. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

    Book  MATH  Google Scholar 

  13. Fan, G., Zhou, Y., Zhang, H., Feng, D.: How to choose interesting points for template attacks more effectively? In: Yung, M., Zhu, L., Yang, Y. (eds.) INTRUST 2014. LNCS, vol. 9473, pp. 168–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27998-5_11

    Chapter  Google Scholar 

  14. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication’’ method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15

    Chapter  MATH  Google Scholar 

  15. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649 (2013)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  17. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using convolutional neural networks with domain knowledge. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 479–498. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_22

    Chapter  Google Scholar 

  18. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution methods for leakage analysis and symmetric key recovery. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 645–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_26

    Chapter  Google Scholar 

  19. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: unleashing the power of convolutional neural networks for profiled side-channel analysis. Cryptology ePrint Archive, Report 2018/1023 (2018). https://eprint.iacr.org/2018/1023

  20. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 148–179 (2019)

    Google Scholar 

  21. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Article  MathSciNet  Google Scholar 

  22. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 25 (2012). https://doi.org/10.1145/3065386

  24. Kwon, D., Kim, H., Hong, S.: Improving non-profiled side-channel attacks using autoencoder based preprocessing (2020)

    Google Scholar 

  25. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2

    Chapter  Google Scholar 

  26. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  27. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Advances in Information Security, Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  28. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural network. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 94–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_7

    Chapter  Google Scholar 

  29. Martinasek, Z., Malina, L., Trasy, K.: Profiling power analysis attack based on multi-layer perceptron network. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds.) Computational Problems in Science and Engineering. LNEE, vol. 343, pp. 317–339. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15765-8_18

    Chapter  Google Scholar 

  30. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general characterization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 145–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_9

    Chapter  Google Scholar 

  31. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31, http://dl.acm.org/citation.cfm?id=18262.25413

  32. Mirchevska, V., Luštrek, M., Gams, M.: Combining domain knowledge and machine learning for robust fall detection. Expert. Syst. 31(2), 163–175 (2014)

    Article  Google Scholar 

  33. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: rapid alignment method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8_17

    Chapter  Google Scholar 

  34. Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it unsupervised: horizontal attacks meet deep learning. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1), 343–372 (2021). https://doi.org/10.46586/tches.v2021.i1.343-372

  35. Perin, G., Chmielewski, Ł., Picek, S.: Strength in numbers: improving generalization with ensembles in machine learning-based profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 337–364 (2020). https://doi.org/10.13154/tches.v2020.i4.337-364, https://tches.iacr.org/index.php/TCHES/article/view/8686

  36. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-channel analysis. IACR Cryptol. ePrint Arch. 2020, 977 (2020). https://eprint.iacr.org/2020/977

  37. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted attacker framework. IACR Cryptol. ePrint Arch. 2019, 168 (2019). https://eprint.iacr.org/2019/168

  38. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019). https://doi.org/10.13154/tches.v2019.i1.209-237

  39. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  40. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ascad database. Cryptology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

  41. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342, http://doi.acm.org/10.1145/359340.359342

  42. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  43. Shu, H., Zhu, H.: Sensitivity analysis of deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4943–4950 (2019). https://doi.org/10.1609/aaai.v33i01.33014943, http://dx.doi.org/10.1609/aaai.v33i01.33014943

  44. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. Preprint, December 2013

    Google Scholar 

  45. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, September 2014

  46. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

  47. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  48. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision, June 2016. https://doi.org/10.1109/CVPR.2016.308

  49. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. arXiv preprint arXiv:1703.00395 (2017)

  50. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 107–131 (2019). https://doi.org/10.13154/tches.v2019.i2.107-131

  51. van der Valk, D., Picek, S., Bhasin, S.: Kilroy was here: the first step towards explainability of neural networks in profiled side-channel analysis. IACR Cryptol. ePrint Arch. 2019, 1477 (2019). https://eprint.iacr.org/2019/1477

  52. Wang, D., Mao, K., Ng, G.W.: Convolutional neural networks and multimodal fusion for text aided image classification. In: 2017 20th International Conference on Information Fusion (Fusion), pp. 1–7. IEEE (2017)

    Google Scholar 

  53. Wegener, F., Moos, T., Moradi, A.: DL-LA: deep learning leakage assessment: a modern roadmap for SCA evaluations. IACR Cryptol. ePrint Arch. 2019, 505 (2019)

    Google Scholar 

  54. Weissbart, L., Picek, S., Batina, L.: One trace is all it takes: machine learning-based side-channel attack on EdDSA. In: Bhasin, S., Mendelson, A., Nandi, M. (eds.) SPACE 2019. LNCS, vol. 11947, pp. 86–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35869-3_8

    Chapter  Google Scholar 

  55. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 104–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_8

    Chapter  Google Scholar 

  56. Wu, L., Picek, S.: Remove some noise: on pre-processing of side-channel measurements with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 389–415 (2020). https://doi.org/10.13154/tches.v2020.i4.389-415

  57. Yang, G., Li, H., Ming, J., Zhou, Y.: Convolutional neural network based side-channel attacks in time-frequency representations. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp. 1–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2_1

    Chapter  Google Scholar 

  58. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embedd. Syst. 2020(1), 1–36 (2019)

    Google Scholar 

  59. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  60. Zhang, J., Zheng, M., Nan, J., Hu, H., Yu, N.: A novel evaluation metric for deep learning-based side channel analysis and its extended application to imbalanced data. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 73–96 (2020). https://doi.org/10.13154/tches.v2020.i3.73-96

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krček, M. et al. (2022). Deep Learning on Side-Channel Analysis. In: Batina, L., Bäck, T., Buhan, I., Picek, S. (eds) Security and Artificial Intelligence. Lecture Notes in Computer Science, vol 13049. Springer, Cham. https://doi.org/10.1007/978-3-030-98795-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98795-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98794-7

  • Online ISBN: 978-3-030-98795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy