Abstract
Passage Retrieval systems aim at retrieving and ranking small text units according to their estimated relevance to a query. A usual practice is to consider the context a passage appears in (its containing document, neighbour passages, etc.) to improve its relevance estimation. In this work, we study the use of Graph Attention Networks (GATs), a graph node embedding method, to perform passage contextualization. More precisely, we first propose a document graph representation based on several inter- and intra-document relations. Then, we investigate two ways of leveraging the use of GATs on this representation in order to incorporate contextual information for passage retrieval. We evaluate our approach on a Passage Retrieval task for structured documents: CLEF-IP2013. Our results show that our document graph representation coupled with the expressive power of GATs allows for a better context representation leading to improved performances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albarede, L., Mulhem, P., Goeuriot, L., Le Pape-Gardeux, C., Marie, S., Chardin-Segui, T.: Passage retrieval in context: experiments on patents. In: Proceedings of CORIA 2021, Grenoble, France (2021). https://hal.archives-ouvertes.fr/hal-03230421
Andersson, L., Lupu, M., Palotti, J.A., Hanbury, A., Rauber, A.: When is the time ripe for natural language processing for patent passage retrieval? In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM 2016, pp. 1453–1462. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2983323.2983858
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2016)
Beigbeder, M.: Focused retrieval with proximity scoring. In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010, pp. 1755–1759. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1774088.1774462
Bendersky, M., Kurland, O.: Utilizing passage-based language models for document retrieval. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 162–174. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78646-7_17
Callan, J.P.: Passage-level evidence in document retrieval. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1994, pp. 302–310. Springer-Verlag, Heidelberg (1994). https://doi.org/10.1007/978-1-4471-2099-5_31
Fernández, R., Losada, D., Azzopardi, L.: Extending the language modeling framework for sentence retrieval to include local context. Inf. Retr. 14, 355–389 (2011). https://doi.org/10.1007/s10791-010-9146-4
Geva, S., Kamps, J., Lethonen, M., Schenkel, R., Thom, J.A., Trotman, A.: Overview of the INEX 2009 ad hoc track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 4–25. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14556-8_4
Gobeill, J., Ruch, P.: Bitem site report for the claims to passage task in CLEF-IP 2012. In: Forner, P., Karlgren, J., Womser-Hacker, C. (eds.) CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy, 17–20 September 2012, CEUR Workshop Proceedings, vol. 1178. CEUR-WS.org (2012). http://ceur-ws.org/Vol-1178/CLEF2012wn-CLEFIP-GobeillEt2012.pdf
Guo, J., et al.: A deep look into neural ranking models for information retrieval. Inf. Process. Manag. 57(6), 102067 (2020)
Han, F., Niu, D., Lai, K., Guo, W., He, Y., Xu, Y.: Inferring search queries from web documents via a graph-augmented sequence to attention network. In: The World Wide Web Conference, WWW 2019, pp. 2792–2798. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3308558.3313746
Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering (2020)
Khattab, O., Zaharia, M.: Colbert: efficient and effective passage search via contextualized late interaction over BERT. CoRR abs/2004.12832 (2020). https://arxiv.org/abs/2004.12832
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
Krikon, E., Kurland, O., Bendersky, M.: Utilizing inter-passage and inter-document similarities for reranking search results. ACM Trans. Inf. Syst. 29(1) (2011). https://doi.org/10.1145/1877766.1877769
Li, X., et al.: Learning better representations for neural information retrieval with graph information. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 795–804. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3340531.3411957
Macdonald, C., McCreadie, R., Santos, R.L., Ounis, I.: From puppy to maturity: experiences in developing terrier. In: Proceedings of OSIR at SIGIR, pp. 60–63 (2012)
Macdonald, C., Tonellotto, N., Ounis, I.: On single and multiple representations in dense passage retrieval. CoRR abs/2108.06279 (2021). https://arxiv.org/abs/2108.06279
Mahdabi, P., Gerani, S., Huang, J.X., Crestani, F.: Leveraging conceptual lexicon: query disambiguation using proximity information for patent retrieval. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013, pp. 113–122. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2484028.2484056
Mahdabi, P., Keikha, M., Gerani, S., Landoni, M., Crestani, F.: Building queries for prior-art search. In: Hanbury, A., Rauber, A., de Vries, A.P. (eds.) IRFC 2011. LNCS, vol. 6653, pp. 3–15. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21353-3_2
Murdock, V., Croft, W.B.: A translation model for sentence retrieval. In: Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 684–691. Association for Computational Linguistics, Vancouver (2005). https://www.aclweb.org/anthology/H05-1086
Nguyen, T., et al.: MS MARCO: a human generated machine reading comprehension dataset. CoRR abs/1611.09268 (2016). http://arxiv.org/abs/1611.09268
Norozi, M.A., Arvola, P.: Kinship contextualization: Utilizing the preceding and following structural elements. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013, pp. 837–840. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2484028.2484111
Norozi, M.A., Arvola, P., de Vries, A.P.: Contextualization using hyperlinks and internal hierarchical structure of wikipedia documents. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012, pp. 734–743. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2396761.2396855
Norozi, M.A., de Vries, A.P., Arvola, P.: Contextualization from the bibliographic structure (2012)
Piroi, F., Lupu, M., Hanbury, A.: Overview of CLEF-IP 2013 lab. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 232–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40802-1_25
Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi at trec-3, pp. 109–126 (1996)
Sheetrit, E., Shtok, A., Kurland, O.: A passage-based approach to learning to rank documents (2019)
Vaswani, A., et al.: Attention is all you need (2017)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks (2018)
Wang, X., et al.: Heterogeneous graph attention network. CoRR abs/1903.07293 (2019). http://arxiv.org/abs/1903.07293
Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval (2020)
Xue, X., Croft, W.B.: Automatic query generation for patent search. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 2037–2040. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1645953.1646295
Yu, J., et al.: Modeling text with graph convolutional network for cross-modal information retrieval (2018)
Zhang, T., Liu, B., Niu, D., Lai, K., Xu, Y.: Multiresolution graph attention networks for relevance matching. Proceedings of the 27th ACM International Conference on Information and Knowledge Management (2018). https://doi.org/10.1145/3269206.3271806
Acknowledgement
This work has been partially supported by MIAI@Grenoble Alpes (ANR-19-P3IA-0003), as well as the Association Nationale de la Recherche et de la Technologie (ANRT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Albarede, L., Mulhem, P., Goeuriot, L., Le Pape-Gardeux, C., Marie, S., Chardin-Segui, T. (2022). Passage Retrieval on Structured Documents Using Graph Attention Networks. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/978-3-030-99739-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-99739-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99738-0
Online ISBN: 978-3-030-99739-7
eBook Packages: Computer ScienceComputer Science (R0)