Abstract
We present new automata-theoretical characterizations for the regularity of the iterated shuffle on commutative regular languages. Using these characterizations we show that, for a fixed alphabet, it is tractable to decide whether the iterated shuffle of a regular commutative language is itself regular when the input language is given by a deterministic automaton. Additionally, we introduce two new subclasses of commutative regular languages, called Type I and Type II languages, on which the iterated shuffle is regularity-preserving and show that the iterated shuffle of a commutative language is a Type I language if it is regular. Additionally, we establish various closure properties and show that we can decide if a language given by deterministic automaton is in one of these classes in polynomial time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As noted by a reviewer, this is a more compact way of expressing the fact that there exist \(n \ge 0\) and \(p > 0\) such that \(q = \delta (q_0 ua^n)\), \(q = \delta (q, a^p)\) and n is divisible by p.
References
Almeida, J., Ésik, Z., Pin, J.: Commutative positive varieties of languages. Acta Cybern. 23(1), 91–111 (2017)
Berman, L.: The complexitiy of logical theories. Theor. Comput. Sci. 11, 71–77 (1980)
Berstel, J., Boasson, L., Carton, O., Pin, J., Restivo, A.: The expressive power of the shuffle product. Inf. Comput. 208(11), 1258–1272 (2010)
Campbell, R.H., Habermann, A.N.: The specification of process synchronization by path expressions. In: Gelenbe, E., Kaiser, C. (eds.) OS 1974. LNCS, vol. 16, pp. 89–102. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0029355
Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theor. Comput. Sci 27, 311–332 (1983)
Fernau, H., Hoffmann, S.: Extensions to minimal synchronizing words. J. Autom. Lang. Combin. 24(2–4), 287–307 (2019)
Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and complexity results on jumping finite automata. Theor. Comput. Sci 679, 31–52 (2017)
Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proceedings of the American Mathematical Society 17, 1043–1049 (1966)
Gohon, P.: An algorithm to decide whether a rational subset of n\(\wedge \) k is recognizable. Theor. Comput. Sci. 41, 51–59 (1985)
Gómez, A.C., Pin, J.: Shuffle on positive varieties of languages. Theor. Comput. Sci. 312(2–3), 433–461 (2004)
Hoffmann, S.: Commutative regular languages – properties and state complexity. In: Ćirić, M., Droste, M., Pin, J.É. (eds.) CAI 2019. LNCS, vol. 11545, pp. 151–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-3_13
Hoffmann, S.: Regularity conditions for iterated shuffle on commutative regular languages. In: Maneth, S. (ed.) CIAA 2021. LNCS, vol. 12803, pp. 27–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79121-6_3
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, Boston (1979)
Imreh, B., Ito, M., Katsura, M.: On shuffle closure of commutative regular languages. In: Bridges, D.S., Calude, C.S., Gibbons, J., Reeves, S., Witten, I.H. (eds.) DMTCS 1996, pp. 276–288. Springer-Verlag, Singapore (1996)
Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore (2004)
Kozen, D.: Automata and Computability. Undergraduate Texts in Computer Science, Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-85706-5
Mazurkiewicz, A.: Parallel recursive program schemes. In: Bečvář, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 75–87. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07389-2_183
Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002)
Pin, J.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 679–746. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5_10
Pin, J.É.: How to prove that a language is regular or star-free? In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2020. LNCS, vol. 12038, pp. 68–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40608-0_5
Restivo, A.: The shuffle product: new research directions. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 70–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_5
Shaw, A.C.: Software descriptions with flow expressions. IEEE Trans. Softw. Eng. 4, 242–254 (1978)
Acknowledgement
I thank the anonymous reviewers for careful reading and helping me identifying some unclear formulations and typos throughout the text.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Hoffmann, S. (2022). Automata-Theoretical Regularity Characterizations for the Iterated Shuffle on Commutative Regular Languages. In: Diekert, V., Volkov, M. (eds) Developments in Language Theory. DLT 2022. Lecture Notes in Computer Science, vol 13257. Springer, Cham. https://doi.org/10.1007/978-3-031-05578-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-05578-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05577-5
Online ISBN: 978-3-031-05578-2
eBook Packages: Computer ScienceComputer Science (R0)