Skip to main content

Automata-Theoretical Regularity Characterizations for the Iterated Shuffle on Commutative Regular Languages

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13257))

Included in the following conference series:

Abstract

We present new automata-theoretical characterizations for the regularity of the iterated shuffle on commutative regular languages. Using these characterizations we show that, for a fixed alphabet, it is tractable to decide whether the iterated shuffle of a regular commutative language is itself regular when the input language is given by a deterministic automaton. Additionally, we introduce two new subclasses of commutative regular languages, called Type I and Type II languages, on which the iterated shuffle is regularity-preserving and show that the iterated shuffle of a commutative language is a Type I language if it is regular. Additionally, we establish various closure properties and show that we can decide if a language given by deterministic automaton is in one of these classes in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As noted by a reviewer, this is a more compact way of expressing the fact that there exist \(n \ge 0\) and \(p > 0\) such that \(q = \delta (q_0 ua^n)\), \(q = \delta (q, a^p)\) and n is divisible by p.

References

  1. Almeida, J., Ésik, Z., Pin, J.: Commutative positive varieties of languages. Acta Cybern. 23(1), 91–111 (2017)

    Article  MathSciNet  Google Scholar 

  2. Berman, L.: The complexitiy of logical theories. Theor. Comput. Sci. 11, 71–77 (1980)

    Article  Google Scholar 

  3. Berstel, J., Boasson, L., Carton, O., Pin, J., Restivo, A.: The expressive power of the shuffle product. Inf. Comput. 208(11), 1258–1272 (2010)

    Article  MathSciNet  Google Scholar 

  4. Campbell, R.H., Habermann, A.N.: The specification of process synchronization by path expressions. In: Gelenbe, E., Kaiser, C. (eds.) OS 1974. LNCS, vol. 16, pp. 89–102. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0029355

    Chapter  Google Scholar 

  5. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theor. Comput. Sci 27, 311–332 (1983)

    Article  MathSciNet  Google Scholar 

  6. Fernau, H., Hoffmann, S.: Extensions to minimal synchronizing words. J. Autom. Lang. Combin. 24(2–4), 287–307 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and complexity results on jumping finite automata. Theor. Comput. Sci 679, 31–52 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proceedings of the American Mathematical Society 17, 1043–1049 (1966)

    Article  MathSciNet  Google Scholar 

  9. Gohon, P.: An algorithm to decide whether a rational subset of n\(\wedge \) k is recognizable. Theor. Comput. Sci. 41, 51–59 (1985)

    Article  MathSciNet  Google Scholar 

  10. Gómez, A.C., Pin, J.: Shuffle on positive varieties of languages. Theor. Comput. Sci. 312(2–3), 433–461 (2004)

    Article  MathSciNet  Google Scholar 

  11. Hoffmann, S.: Commutative regular languages – properties and state complexity. In: Ćirić, M., Droste, M., Pin, J.É. (eds.) CAI 2019. LNCS, vol. 11545, pp. 151–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-3_13

    Chapter  Google Scholar 

  12. Hoffmann, S.: Regularity conditions for iterated shuffle on commutative regular languages. In: Maneth, S. (ed.) CIAA 2021. LNCS, vol. 12803, pp. 27–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79121-6_3

    Chapter  Google Scholar 

  13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, Boston (1979)

    MATH  Google Scholar 

  14. Imreh, B., Ito, M., Katsura, M.: On shuffle closure of commutative regular languages. In: Bridges, D.S., Calude, C.S., Gibbons, J., Reeves, S., Witten, I.H. (eds.) DMTCS 1996, pp. 276–288. Springer-Verlag, Singapore (1996)

    Google Scholar 

  15. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore (2004)

    Book  Google Scholar 

  16. Kozen, D.: Automata and Computability. Undergraduate Texts in Computer Science, Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-85706-5

    Book  MATH  Google Scholar 

  17. Mazurkiewicz, A.: Parallel recursive program schemes. In: Bečvář, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 75–87. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07389-2_183

    Chapter  Google Scholar 

  18. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002)

    Article  MathSciNet  Google Scholar 

  19. Pin, J.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 679–746. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5_10

    Chapter  Google Scholar 

  20. Pin, J.É.: How to prove that a language is regular or star-free? In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2020. LNCS, vol. 12038, pp. 68–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40608-0_5

    Chapter  Google Scholar 

  21. Restivo, A.: The shuffle product: new research directions. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 70–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_5

    Chapter  Google Scholar 

  22. Shaw, A.C.: Software descriptions with flow expressions. IEEE Trans. Softw. Eng. 4, 242–254 (1978)

    Article  Google Scholar 

Download references

Acknowledgement

I thank the anonymous reviewers for careful reading and helping me identifying some unclear formulations and typos throughout the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, S. (2022). Automata-Theoretical Regularity Characterizations for the Iterated Shuffle on Commutative Regular Languages. In: Diekert, V., Volkov, M. (eds) Developments in Language Theory. DLT 2022. Lecture Notes in Computer Science, vol 13257. Springer, Cham. https://doi.org/10.1007/978-3-031-05578-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05578-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05577-5

  • Online ISBN: 978-3-031-05578-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy