Skip to main content

A White-Box Speck Implementation Using Self-equivalence Encodings

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13269))

Included in the following conference series:

Abstract

In 2002, Chow et al. initiated the formal study of white-box cryptography and introduced the CEJO framework. Since then, various white-box designs based on their framework have been proposed, all of them broken. Ranea and Preneel proposed a different method in 2020, called self-equivalence encodings and analyzed its security for AES. In this paper, we apply this method to generate the first academic white-box speck implementations using self-equivalence encodings. Although we focus on speck in this work, our design could easily be adapted to protect other add-rotate-xor (ARX) ciphers. Then, we analyze the security of our implementation against key-recovery attacks. We propose an algebraic attack to fully recover the master key and external encodings from a white-box speck implementation, with limited effort required. While this result shows that the linear and affine self-equivalences of speck are insecure, we hope that this negative result will spur additional research in higher-degree self-equivalence encodings for white-box cryptography. Finally, we created an open-source Python project implementing our design, publicly available at https://github.com/jvdsn/white-box-speck. We give an overview of five strategies to generate output code, which can be used to improve the performance of the white-box implementation. We compare these strategies and determine how to generate the most performant white-box speck code. Furthermore, this project could be employed to test and compare the efficiency of attacks on white-box implementations using self-equivalence encodings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our method will focus on protecting the speck encryption function, but this design could easily be adapted to the speck decryption function.

  2. 2.

    https://github.com/jvdsn/white-box-speck.

  3. 3.

    Our project currently only supports the generation of white-box speck encryption code. However, the existing project could easily be modified to also generate white-box speck decryption implementations. When discussing the generated code in this section, we always refer to speck encryption.

References

  1. Welcome to python.org. https://www.python.org/

  2. Baek, C.H., Cheon, J.H., Hong, H.: White-box AES implementation revisited. J. Commun. Netw. 18(3), 273–287 (2016)

    Article  Google Scholar 

  3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint Arch, p. 404 (2013)

    Google Scholar 

  4. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol. 8, pp. 3–5 (2008)

    Google Scholar 

  5. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_8

    Chapter  Google Scholar 

  6. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_34

    Chapter  Google Scholar 

  7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  8. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_16

    Chapter  Google Scholar 

  9. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic Schemes Based on the ASASA Structure: Black-Box, White-Box, and Public-Key (Extended Abstract). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_4

    Chapter  Google Scholar 

  10. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanalysis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_3

    Chapter  Google Scholar 

  11. Bock, E.A., Amadori, A., Brzuska, C., Michiels, W.: On the security goals of white-box cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(2), 327–357 (2020)

    Article  Google Scholar 

  12. Bock, E.A., et al.: White-box cryptography: don’t forget about grey-box attacks. J. Cryptol. 32(4), 1095–1143 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of internal encodings - revisiting the DCA attack on white-box cryptography. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 103–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_6

    Chapter  MATH  Google Scholar 

  14. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In: CCS, pp. 1058–1069. ACM (2015)

    Google Scholar 

  15. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptography: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_5

    Chapter  Google Scholar 

  16. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis: hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_11

    Chapter  Google Scholar 

  17. Brickenstein, M., Dreyer, A.: PolyBoRi: a framework for Gröbner-basis computations with boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009)

    Article  MATH  Google Scholar 

  18. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt. IACR Cryptol. ePrint Arch., p. 468 (2006)

    Google Scholar 

  19. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_17

    Chapter  MATH  Google Scholar 

  20. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES implementation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5_1

    Chapter  Google Scholar 

  21. Daemen, J., Rijmen, V.: The advanced encryption standard process. In: The Design of Rijndael. Information Security and Cryptography, 2nd edn. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4_1

  22. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_3

    Chapter  Google Scholar 

  23. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8_21

    Chapter  Google Scholar 

  24. Derbez, P., Fouque, P., Lambin, B., Minaud, B.: On recovering affine encodings in white-box implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 121–149 (2018)

    Article  Google Scholar 

  25. Ferguson, N., et al.: The Skein hash function family. Submission to NIST (round 3) 7(7.5), 3 (2010)

    Google Scholar 

  26. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 278–295. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_18

    Chapter  Google Scholar 

  27. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5_2

    Chapter  Google Scholar 

  28. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24209-0_19

    Chapter  Google Scholar 

  29. Lee, S., Choi, D., Choi, Y.J.: Conditional re-encoding method for cryptanalysis-resistant white-box AES. ETRI J. 37(5), 1012–1022 (2015)

    Article  Google Scholar 

  30. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_14

    Chapter  Google Scholar 

  31. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of white-box DES. In: ITCC (1), pp. 679–684. IEEE Computer Society (2005)

    Google Scholar 

  32. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  33. McMillion, B., Sullivan, N.: Attacking white-box AES constructions. In: SPRO@CCS, pp. 85–90. ACM (2016)

    Google Scholar 

  34. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_27

    Chapter  Google Scholar 

  35. Minaud, B., Derbez, P., Fouque, P., Karpman, P.: Key-recovery attacks on ASASA. J. Cryptol. 31(3), 845–884 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ranea, A., Preneel, B.: On self-equivalence encodings in white-box implementations. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 639–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_25

    Chapter  MATH  Google Scholar 

  37. Ranea, A., Vandersmissen, J., Preneel, B.: Implicit white-box implementations: White-boxing ARX ciphers. IACR Cryptol. ePrint Arch. (2022)

    Google Scholar 

  38. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.4) (2021). https://www.sagemath.org

  39. Vandersmissen, J., Ranea, A., Preneel, B.: A white-box speck implementation using self-equivalence encodings (full version). IACR Cryptol. ePrint Arch. (2022)

    Google Scholar 

  40. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box DES implementations with arbitrary external encodings. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_17

    Chapter  Google Scholar 

  41. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd International Conference on Computer Science and its Applications, pp. 1–6. IEEE (2009)

    Google Scholar 

  42. Yoo, J., Jeong, H., Won, D.: A method for secure and efficient block cipher using white-box cryptography. In: ICUIMC, pp. 89:1–89:8. ACM (2012)

    Google Scholar 

Download references

Acknowledgements

Joachim Vandersmissen would like to thank atsec information security for its support. Adrián Ranea is supported by a PhD Fellowship from the Research Foundation - Flanders (FWO). The authors would like to thank the anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Vandersmissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vandersmissen, J., Ranea, A., Preneel, B. (2022). A White-Box Speck Implementation Using Self-equivalence Encodings. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy