Abstract
In 2002, Chow et al. initiated the formal study of white-box cryptography and introduced the CEJO framework. Since then, various white-box designs based on their framework have been proposed, all of them broken. Ranea and Preneel proposed a different method in 2020, called self-equivalence encodings and analyzed its security for AES. In this paper, we apply this method to generate the first academic white-box speck implementations using self-equivalence encodings. Although we focus on speck in this work, our design could easily be adapted to protect other add-rotate-xor (ARX) ciphers. Then, we analyze the security of our implementation against key-recovery attacks. We propose an algebraic attack to fully recover the master key and external encodings from a white-box speck implementation, with limited effort required. While this result shows that the linear and affine self-equivalences of speck are insecure, we hope that this negative result will spur additional research in higher-degree self-equivalence encodings for white-box cryptography. Finally, we created an open-source Python project implementing our design, publicly available at https://github.com/jvdsn/white-box-speck. We give an overview of five strategies to generate output code, which can be used to improve the performance of the white-box implementation. We compare these strategies and determine how to generate the most performant white-box speck code. Furthermore, this project could be employed to test and compare the efficiency of attacks on white-box implementations using self-equivalence encodings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Our method will focus on protecting the speck encryption function, but this design could easily be adapted to the speck decryption function.
- 2.
- 3.
Our project currently only supports the generation of white-box speck encryption code. However, the existing project could easily be modified to also generate white-box speck decryption implementations. When discussing the generated code in this section, we always refer to speck encryption.
References
Welcome to python.org. https://www.python.org/
Baek, C.H., Cheon, J.H., Hong, H.: White-box AES implementation revisited. J. Commun. Netw. 18(3), 273–287 (2016)
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint Arch, p. 404 (2013)
Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol. 8, pp. 3–5 (2008)
Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_8
Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_34
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259
Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_16
Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic Schemes Based on the ASASA Structure: Black-Box, White-Box, and Public-Key (Extended Abstract). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_4
Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanalysis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_3
Bock, E.A., Amadori, A., Brzuska, C., Michiels, W.: On the security goals of white-box cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(2), 327–357 (2020)
Bock, E.A., et al.: White-box cryptography: don’t forget about grey-box attacks. J. Cryptol. 32(4), 1095–1143 (2019)
Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of internal encodings - revisiting the DCA attack on white-box cryptography. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 103–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_6
Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In: CCS, pp. 1058–1069. ACM (2015)
Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptography: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_5
Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis: hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_11
Brickenstein, M., Dreyer, A.: PolyBoRi: a framework for Gröbner-basis computations with boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009)
Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt. IACR Cryptol. ePrint Arch., p. 468 (2006)
Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_17
Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES implementation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5_1
Daemen, J., Rijmen, V.: The advanced encryption standard process. In: The Design of Rijndael. Information Security and Cryptography, 2nd edn. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4_1
De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_3
De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8_21
Derbez, P., Fouque, P., Lambin, B., Minaud, B.: On recovering affine encodings in white-box implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 121–149 (2018)
Ferguson, N., et al.: The Skein hash function family. Submission to NIST (round 3) 7(7.5), 3 (2010)
Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 278–295. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_18
Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5_2
Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24209-0_19
Lee, S., Choi, D., Choi, Y.J.: Conditional re-encoding method for cryptanalysis-resistant white-box AES. ETRI J. 37(5), 1012–1022 (2015)
Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_14
Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of white-box DES. In: ITCC (1), pp. 679–684. IEEE Computer Society (2005)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
McMillion, B., Sullivan, N.: Attacking white-box AES constructions. In: SPRO@CCS, pp. 85–90. ACM (2016)
Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_27
Minaud, B., Derbez, P., Fouque, P., Karpman, P.: Key-recovery attacks on ASASA. J. Cryptol. 31(3), 845–884 (2018)
Ranea, A., Preneel, B.: On self-equivalence encodings in white-box implementations. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 639–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_25
Ranea, A., Vandersmissen, J., Preneel, B.: Implicit white-box implementations: White-boxing ARX ciphers. IACR Cryptol. ePrint Arch. (2022)
The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.4) (2021). https://www.sagemath.org
Vandersmissen, J., Ranea, A., Preneel, B.: A white-box speck implementation using self-equivalence encodings (full version). IACR Cryptol. ePrint Arch. (2022)
Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box DES implementations with arbitrary external encodings. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_17
Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd International Conference on Computer Science and its Applications, pp. 1–6. IEEE (2009)
Yoo, J., Jeong, H., Won, D.: A method for secure and efficient block cipher using white-box cryptography. In: ICUIMC, pp. 89:1–89:8. ACM (2012)
Acknowledgements
Joachim Vandersmissen would like to thank atsec information security for its support. Adrián Ranea is supported by a PhD Fellowship from the Research Foundation - Flanders (FWO). The authors would like to thank the anonymous reviewers for their comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Vandersmissen, J., Ranea, A., Preneel, B. (2022). A White-Box Speck Implementation Using Self-equivalence Encodings. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-09234-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09233-6
Online ISBN: 978-3-031-09234-3
eBook Packages: Computer ScienceComputer Science (R0)