Abstract
Although urbanization benefits modern society and residents of urban cities, limited public resources—such as parking facilities—remain a problem. Parking pricing acts as a tool to adjust the available resources. How should parking pricing be used to maximize parking resource utilization while optimizing the parking revenue for parking management? In this paper, we present a system that utilizes available public resources while optimizing revenue with predefined restrictions, especially in the parking management field. More specifically, we design a data-driven time-series based prediction system, which can support dynamic pricing. Evaluation results show the effectiveness and practicality of our parking data analytics system for supporting parking facility management and dynamic pricing for parking applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alam, M.T., et al.: UGMINE: utility-based graph mining. Appl. Intell. (2022). https://doi.org/10.1007/s10489-022-03385-8
Cabusas, R.M., et al.: Mining for fake news. In: Barolli, L., Hussain, F., Enokido, T. (eds.) AINA 2022, Part II. LNNS, vol. 450, pp. 154–166. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99587-4_14
Chowdhury, M.E.S., et al.: A new approach for mining correlated frequent subgraphs. ACM Trans. Manage. Inf. Syst. 13(1), 9:1–9:28 (2022)
Ishita, S.Z., et al.: New approaches for mining regular high utility sequential patterns. Appl. Intell. 52, 3781–3806 (2022)
Jiang, F., et al.: Big social data mining in a cloud computing environment. In: ICCBB 2018, pp. 58–65 (2018)
Leung, C.K., et al.: Distributed uncertain data mining for frequent patterns satisfying anti-monotonic constraints. In: IEEE AINA Workshops 2014, pp. 1–6 (2014)
Leung, C.K., et al.: Parallel social network mining for interesting ‘following’ patterns. Concurr. Comput. Pract. Exp. 28(15), 3994–4012 (2016)
Rahman, M.M., et al.: Mining weighted frequent sequences in uncertain databases. Inf. Sci. 479, 76–100 (2019)
Roy, K.K., et al.: Mining weighted sequential patterns in incremental uncertain databases. Inf. Sci. 582, 865–896 (2022)
Smallwood, J.F., et al.: Mining the impacts of COVID-19 pandemic on the labour market. In: IMCOM 2022, pp. 337–344 (2022)
Anderson-Gregoire, I.M., et al.: A big data science solution for analytics on moving objects. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021, vol. 2. LNNS, vol. 226, pp. 133–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75075-6_11
Leung, C.K., et al.: Big data analytics of social network data: who cares most about you on Facebook? In: Moshirpour, M., Far, B., Alhajj, R. (eds.) Highlighting the Importance of Big Data Management and Analysis for Various Applications. Studies in Big Data, vol. 27, pp. 1–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60255-4_1
Leung, C.K., et al.: Data mining on open public transit data for transportation analytics during pre-COVID-19 era and COVID-19 era. In: Barolli, L., Li, K.F., Miwa, H. (eds.) INCoS 2020. AISC, vol. 1263, pp. 133–144. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57796-4_13
Ahn, S., et al.: A fuzzy logic based machine learning tool for supporting big data business analytics in complex artificial intelligence environments. In: FUZZ-IEEE 2019, pp. 1259–1264 (2019)
Leung, C.K., et al.: Explainable machine learning and mining of influential patterns from sparse web. In: IEEE/WIC/ACM WI-IAT 2020, pp. 829–836 (2020)
Morris, K.J., et al.: Token-based adaptive time-series prediction by ensembling linear and non-linear estimators: a machine learning approach for predictive analytics on big stock data. In: IEEE ICMLA 2018, pp. 1486–1491 (2018)
Eom, C.S., et al.: Effective privacy preserving data publishing by vectorization. Inf. Sci. 527, 311–328 (2020)
Leung, C.K.: Mathematical model for propagation of influence in a social network. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, 2nd edn., pp. 1261–1269. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7131-2_110201
Isichei, B.C., et al.: Sports data management, mining, and visualization. In: Barolli, L., Hussain, F., Enokido, T. (eds.) AINA 2022, Part II. LNNS, vol. 450, pp. 141–153. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99587-4_13
Leung, C.K., Kaufmann, T.N., Wen, Y., Zhao, C., Zheng, H.: Revealing COVID-19 data by data mining and visualization. In: Barolli, L., Chen, H.-C., Miwa, H. (eds.) INCoS 2021. LNNS, vol. 312, pp. 70–83. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84910-8_8
Leung, C.-S., Carmichael, C.L., Teh, E.W.: Visual analytics of social networks: mining and visualizing co-authorship networks. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011. LNCS (LNAI), vol. 6780, pp. 335–345. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21852-1_40
Audu, A.-R., Cuzzocrea, A., Leung, C.K., MacLeod, K.A., Ohin, N.I., Pulgar-Vidal, N.C.: An intelligent predictive analytics system for transportation analytics on open data towards the development of a smart city. In: Barolli, L., Hussain, F.K., Ikeda, M. (eds.) CISIS 2019. AISC, vol. 993, pp. 224–236. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22354-0_21
Deng, D.: Dynamic pricing for predictive analytics in parking. MSc thesis, U Manitoba, Canada (2021)
Souza, J., Leung, C.K., Cuzzocrea, A.: An innovative big data predictive analytics framework over hybrid big data sources with an application for disease analytics. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020. AISC, vol. 1151, pp. 669–680. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44041-1_59
Arellano-Verdejo, J., Alba, E.: Optimal allocation of public parking slots using evolutionary algorithms. In: INCoS 2016, pp. 222–228 (2016)
de Almeida, P.R.L., et al.: A systematic review on computer vision-based parking lot management applied on public datasets. Expert Syst. Appl. 198, 116731:1–116731:18 (2022)
Fan, J., et al.: Predicting vacant parking space availability: a long short-term memory approach. IEEE Intell. Transp. Syst. 14(2), 129–143 (2022)
Wu, Y., et al.: Competitive spatial pricing for urban parking systems: network structures and asymmetric information. IISE Trans. 54(2), 186–197 (2022)
Zeng, C., et al.: Parking occupancy prediction method based on multi factors and stacked GRU-LSTM. IEEE Access 10, 47361–47370 (2022)
Zou, B., et al.: A mechanism design based approach to solving parking slot assignment in the information era. Transp. Res. Part B: Methodol. 81, 631–653 (2015)
Sheelarani, S.P., et al.: Effective car parking reservation system based on internet of things technologies. In: StartUp Conclave 2016. https://doi.org/10.1109/STARTUP.2016.7583962
Du, Y., et al.: Allocation of street parking facilities in a capacitated network with equilibrium constraints on drivers’ traveling and cruising for parking. Transp. Res. Part C: Emerg. Technol. 101, 181–207 (2019)
Inci, E., Lindsey, R.: Garage and curbside parking competition with search congestion. Reg. Sci. Urban Econ. 54, 49–59 (2015)
Zhang, R., Zhu, L.: Curbside parking pricing in a city centre using a threshold. Transp. Policy 52, 16–27 (2016)
Shoup, D.: The High Cost of Free Parking: Updated Edition. Routledge (2011)
Hamilton, J.D.: Time Series Analysis. Princeton University Press (1994)
Box, G.E.P., et al.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley (2015)
Liu, C., et al.: Online ARIMA algorithms for time series prediction. In: AAAI 2016, 1867–1873 (2016)
Siami-Namini, S., et al.: A comparison of ARIMA and LSTM in forecasting time series. In: IEEE ICMLA 2018, pp. 1394–1401 (2018)
Benvenuto, D., et al.: Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief 29, 105340:1–105340:4 (2020)
Arumugam, P., Saranya, R.: Outlier detection and missing value in seasonal ARIMA model using rainfall data*. Mater. Today 5(1), Part 1, 1791–1799 (2018)
Xu, X., et al.: Forecasting demand of commodities after natural disasters. Expert Syst. Appl. 37(6), 4313–4317 (2010)
Ba, J., Kingma, D.: Adam: a method for stochastic optimization. In: ICLR 2015 Poster (2015)
Dozat, T.: Incorporating Nesterov momentum into Adam. In: ICLR 2016 Workshop Track Poster (2016)
Acknowledgements
This work is partially supported by Mitacs, Natural Sciences and Engineering Research Council of Canada (NSERC), University of Manitoba, as well as Winnipeg Airports Authority (WAA). Also thanks S. Marohn, C. McFadyen, R. Olaes-Zimolag, B. Podaima, T. Strome, R. Wei, and B. Zamorano for their domain expertise.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Deng, D., Leung, C.K., Pazdor, A.G.M. (2022). Data Analytics for Parking Facility Management. In: Barolli, L., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2022. Lecture Notes in Networks and Systems, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-14627-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-14627-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14626-8
Online ISBN: 978-3-031-14627-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)