Skip to main content

Hierarchically Structured Scheduling and Execution of Tasks in a Multi-agent Environment

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13566))

Included in the following conference series:

  • 1609 Accesses

Abstract

In a warehouse environment, tasks appear dynamically. Consequently, a task management system that matches them with the workforce too early (e.g., weeks in advance) is necessarily sub-optimal. Also, the rapidly increasing size of the action space of such a system consists of a significant problem for traditional schedulers. Reinforcement learning, however, is suited to deal with issues requiring making sequential decisions towards a long-term, often remote, goal. In this work, we set ourselves on a problem that presents itself with a hierarchical structure: the task-scheduling, by a centralised agent, in a dynamic warehouse multi-agent environment and the execution of one such schedule, by decentralised agents with only partial observability thereof. We propose to use deep reinforcement learning to solve both the high-level scheduling problem and the low-level multi-agent problem of schedule execution. The topic and contribution is relevant to both reinforcement learning and operations research scientific communities and is directed towards future real-world industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahilan, S., Dayan, P.: Feudal multi-agent hierarchies for cooperative reinforcement learning. arXiv preprint arXiv:1901.08492 (2019)

  2. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029569

    Chapter  Google Scholar 

  3. Bacon, P.L., Harb, J., Precup, D.: The option-critic architecture. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  4. Chevalier-Boisvert, M., Willems, L., Pal, S.: Minimalistic gridworld environment for openai gym (2018). https://github.com/maximecb/gym-minigrid

  5. Christianos, F., Papoudakis, G., Rahman, M.A., Albrecht, S.V.: Scaling multi-agent reinforcement learning with selective parameter sharing. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, 18–24 July 2021, vol. 139, pp. 1989–1998. PMLR (2021). https://proceedings.mlr.press/v139/christianos21a.html

  6. Claes, D., Oliehoek, F., Baier, H., Tuyls, K., et al.: Decentralised online planning for multi-robot warehouse commissioning. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 492–500 (2017)

    Google Scholar 

  7. Dayan, P., Hinton, G.E.: Feudal reinforcement learning. In: Hanson, S., Cowan, J., Giles, C. (eds.) Advances in Neural Information Processing Systems, vol. 5. Morgan-Kaufmann (1993)

    Google Scholar 

  8. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function decomposition. J. Artif. Intell. Res. 13, 227–303 (2000)

    Article  MathSciNet  Google Scholar 

  9. Fickinger, A.: Multi-agent gridworld environment for openai gym (2020). https://github.com/ArnaudFickinger/gym-multigrid

  10. Fluri, C., Ruch, C., Zilly, J., Hakenberg, J., Frazzoli, E.: Learning to operate a fleet of cars. In: IEEE Intelligent Transportation Systems Conference (ITSC) (2019)

    Google Scholar 

  11. Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  12. Gammelli, D., Yang, K., Harrison, J., Rodrigues, F., Pereira, F.C., Pavone, M.: Graph neural network reinforcement learning for autonomous mobility-on-demand systems. arXiv preprint arXiv:2104.11434 (2021)

  13. Guériau, M., Dusparic, I.: Samod: Shared autonomous mobility-on-demand using decentralized reinforcement learning. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE (2018)

    Google Scholar 

  14. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement learning. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10642, pp. 66–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71682-4_5

    Chapter  Google Scholar 

  15. Holler, J., et al.: Deep reinforcement learning for multi-driver vehicle dispatching and repositioning problem. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 1090–1095. IEEE (2019)

    Google Scholar 

  16. Hu, Y., Yao, Y., Lee, W.S.: A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs. Knowl.-Based Syst. 204, 106244 (2020)

    Article  Google Scholar 

  17. Kaempfer, Y., Wolf, L.: Learning the multiple traveling salesmen problem with permutation invariant pooling networks. arXiv preprint arXiv:1803.09621 (2018)

  18. Kong, X., Xin, B., Liu, F., Wang, Y.: Revisiting the master-slave architecture in multi-agent deep reinforcement learning. arXiv preprint arXiv:1712.07305 (2017)

  19. Kraemer, L., Banerjee, B.: Multi-agent reinforcement learning as a rehearsal for decentralized planning. Neurocomputing 190, 82–94 (2016)

    Article  Google Scholar 

  20. Lei, Z., Qian, X., Ukkusuri, S.V.: Efficient proactive vehicle relocation for on-demand mobility service with recurrent neural networks. Transp. Res. Part C: Emerg. Technol. 117, 102678 (2020)

    Article  Google Scholar 

  21. Liang, E., et al.: RLlib: abstractions for distributed reinforcement learning. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  22. Lin, K., Zhao, R., Xu, Z., Zhou, J.: Efficient large-scale fleet management via multi-agent deep reinforcement learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)

    Google Scholar 

  23. Liu, N., et al.: A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 372–382. IEEE (2017)

    Google Scholar 

  24. Makar, R., Mahadevan, S., Ghavamzadeh, M.: Hierarchical multi-agent reinforcement learning. In: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 246–253 (2001)

    Google Scholar 

  25. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp. 50–56 (2016)

    Google Scholar 

  26. Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M.: Learning scheduling algorithms for data processing clusters. In: Proceedings of the ACM Special Interest Group on Data Communication, pp. 270–288 (2019)

    Google Scholar 

  27. Ming, G.F., Hua, S.: Course-scheduling algorithm of option-based hierarchical reinforcement learning. In: 2010 Second International Workshop on Education Technology and Computer Science, vol. 1, pp. 288–291. IEEE (2010)

    Google Scholar 

  28. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  29. Nachum, O., Gu, S.S., Lee, H., Levine, S.: Data-efficient hierarchical reinforcement learning. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  30. Papoudakis, G., Christianos, F., Rahman, A., Albrecht, S.V.: Dealing with non-stationarity in multi-agent deep reinforcement learning. arXiv preprint arXiv:1906.04737 (2019)

  31. Parr, R., Russell, S.: Reinforcement learning with hierarchies of machines. Advances in Neural Information Processing Systems, pp. 1043–1049 (1998)

    Google Scholar 

  32. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  33. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: a framework for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211 (1999)

    Article  MathSciNet  Google Scholar 

  34. Tang, H., et al.: Hierarchical deep multiagent reinforcement learning with temporal abstraction. arXiv preprint arXiv:1809.09332 (2018)

  35. Terry, J.K., Grammel, N., Hari, A., Santos, L., Black, B.: Revisiting parameter sharing in multi-agent deep reinforcement learning. arXiv preprint arXiv:2005.13625 (2020)

  36. Ye, H., Li, G.Y.: Deep reinforcement learning for resource allocation in v2v communications. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia under project UIDB/50021/2020 and scholarship 2020.05360.BD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carvalho, D., Sengupta, B. (2022). Hierarchically Structured Scheduling and Execution of Tasks in a Multi-agent Environment. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16474-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16473-6

  • Online ISBN: 978-3-031-16474-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy