Abstract
A novel perspective for Weakly Supervised object localization is proposed in this paper. Most recent pseudo-label-based methods only consider how to get better pseudo-labels and do not consider how to apply these imperfect labels properly. We propose the Noisy-Label Learning on Weakly Supervised object localization (NL-WSOL) to improve localization performance by cleaning defective labels. First, we generate labels which more focused categories for images in the label generation stage. Then, we judge the quality of pseudo labels and enhance the labels with poor quality. Moreover, we introduce a composite loss function to guide the network training in the pseudo-label-based training phase. Our method achieves 97.39% localization performance on the CUB-200–2011 test set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bilen, H., Pedersoli, M., Tuytelaars, T.: Weakly supervised object detection with convex clustering. In: CVPR, pp. 1081–1089 (2015)
Chen, X., Ma, A.J., Guo, N., Chen, J.: Improving weakly supervised object localization by uncertainty estimation of pseudo supervision. In: ICME, pp. 1–6. IEEE (2021)
Choe, J., Oh, S.J., Lee, S., Chun, S., Akata, Z., Shim, H.: Evaluating weakly supervised object localization methods right. In: CVPR, pp. 3133–3142 (2020)
Choe, J., Shim, H.: Attention-based dropout layer for weakly supervised object localization. In: CVPR, pp. 2219–2228 (2019)
Gao, W., et al.: TS-CAM: token semantic coupled attention map for weakly supervised object localization. In: ICCV, pp. 2886–2895 (2021)
Guo, G., Han, J., Wan, F., Zhang, D.: Strengthen learning tolerance for weakly supervised object localization. In: CVPR, pp. 7403–7412 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: CVPR, pp. 5001–5009 (2018)
Kervadec, H., Dolz, J., Tang, M., Granger, E., Boykov, Y., Ayed, I.B.: Constrained-CNN losses for weakly supervised segmentation. Med. Image Anal. 54, 88–99 (2019)
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
Lu, W., Jia, X., Xie, W., Shen, L., Zhou, Y., Duan, J.: Geometry constrained weakly supervised object localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 481–496. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_29
Mai, J., Yang, M., Luo, W.: Erasing integrated learning: a simple yet effective approach for weakly supervised object localization. In: CVPR, pp. 8766–8775 (2020)
Pan, X., et al.: Unveiling the potential of structure preserving for weakly supervised object localization. In: CVPR, pp. 11642–11651 (2021)
Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: ICCV, pp. 1796–1804 (2015)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Singh, K.K., Lee, Y.J.: Hide-and-seek: forcing a network to be meticulous for weakly-supervised object and action localization. In: ICCV, pp. 3544–3553. IEEE (2017)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)
Tan, C., Gu, G., Ruan, T., Wei, S., Zhao, Y.: Dual-gradients localization framework for weakly supervised object localization. In: ACMMM, pp. 1976–1984 (2020)
Tang, P., et al.: PCL: proposal cluster learning for weakly supervised object detection. TPAMI 42(1), 176–191 (2018)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICML, pp. 10347–10357. PMLR (2021)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset (2011)
Wan, F., Wei, P., Jiao, J., Han, Z., Ye, Q.: Min-entropy latent model for weakly supervised object detection. In: CVPR, pp. 1297–1306 (2018)
Wei, J., Wang, Q., Li, Z., Wang, S., Zhou, S.K., Cui, S.: Shallow feature matters for weakly supervised object localization. In: CVPR, pp. 5993–6001 (2021)
Wei, X.S., Zhang, C.L., Wu, J., Shen, C., Zhou, Z.H.: Unsupervised object discovery and co-localization by deep descriptor transformation. In: PR 88, 113–126 (2019)
Xie, J., Luo, C., Zhu, X., Jin, Z., Lu, W., Shen, L.: Online refinement of low-level feature based activation map for weakly supervised object localization. In: ICCV, pp. 132–141 (2021)
Xue, H., Liu, C., Wan, F., Jiao, J., Ji, X., Ye, Q.: DANet: divergent activation for weakly supervised object localization. In: ICCV, pp. 6589–6598 (2019)
Yang, S., Kim, Y., Kim, Y., Kim, C.: Combinational class activation maps for weakly supervised object localization. In: WACV, pp. 2941–2949 (2020)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: ICCV, pp. 6023–6032 (2019)
Zhang, C.L., Cao, Y.H., Wu, J.: Rethinking the route towards weakly supervised object localization. In: CVPR, pp. 13460–13469 (2020)
Zhang, X., Wei, Y., Feng, J., Yang, Y., Huang, T.S.: Adversarial complementary learning for weakly supervised object localization. In: CVPR, pp. 1325–1334 (2018)
Zhang, X., Wei, Y., Kang, G., Yang, Y., Huang, T.: Self-produced guidance for weakly-supervised object localization. In: ECCV, pp. 597–613 (2018)
Zhang, X., Wei, Y., Yang, Y.: Inter-image communication for weakly supervised localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 271–287. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_17
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)
Zhu, L., She, Q., Chen, Q., You, Y., Wang, B., Lu, Y.: Weakly supervised object localization as domain adaption. arXiv preprint arXiv:2203.01714 (2022)
Zhu, Y., Zhou, Y., Xu, H., Ye, Q., Doermann, D., Jiao, J.: Learning instance activation maps for weakly supervised instance segmentation. In: CVPR, pp. 3116–3125 (2019)
Acknowledgments
This work was supported in part by the National Key R &D Program of China (No. 2021ZD0112100), National NSF of China (No. 61972022, No. U1936212, No. 62120106009).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fan, Y., Wei, S., Tan, C., Chen, X., Zhao, Y. (2022). Weakly Supervised Object Localization with Noisy-Label Learning. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-18916-6_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18915-9
Online ISBN: 978-3-031-18916-6
eBook Packages: Computer ScienceComputer Science (R0)