Skip to main content

Pairwise Contrastive Learning Network for Action Quality Assessment

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13664))

Included in the following conference series:

Abstract

Considering the complexity of modeling diverse actions of athletes, action quality assessment (AQA) in sports is a challenging task. A common solution is to tackle this problem as a regression task that map the input video to the final score provided by referees. However, it ignores the subtle and critical difference between videos. To address this problem, a new pairwise contrastive learning network (PCLN) is proposed to concern these differences and form an end-to-end AQA model with basic regression network. Specifically, the PCLN encodes video pairs to learn relative scores between videos to improve the performance of basic regression network. Furthermore, a new consistency constraint is defined to guide the training of the proposed AQA model. In the testing phase, only the basic regression network is employed, which makes the proposed method simple but high accuracy. The proposed method is verified on the AQA-7 and MTL-AQA datasets. Several ablation studies are built to verify the effectiveness of each component in the proposed method. The experimental results show that the proposed method achieves the state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Dong, L.J., Zhang, H.B., Shi, Q., Lei, Q., Du, J.X., Gao, S.: Learning and fusing multiple hidden substages for action quality assessment. Knowl.-Based Syst. 107388 (2021). https://doi.org/10.1016/j.knosys.2021.107388, https://www.sciencedirect.com/science/article/pii/S095070512100650X

  4. Doughty, H., Damen, D., Mayol-Cuevas, W.: Who’s better? Who’s best? Pairwise deep ranking for skill determination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6057–6066 (2018)

    Google Scholar 

  5. Doughty, H., Mayol-Cuevas, W., Damen, D.: The pros and cons: rank-aware temporal attention for skill determination in long videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7862–7871 (2019)

    Google Scholar 

  6. Faller, A.J.: An average correlation coefficient. J. Appl. Meteorol. 20(2), 203–205 (1981)

    Article  Google Scholar 

  7. Farabi, S., et al.: Improving action quality assessment using resnets and weighted aggregation. arXiv preprint arXiv:2102.10555 (2021)

  8. Fard, M.J., Ameri, S., Darin Ellis, R., Chinnam, R.B., Pandya, A.K., Klein, M.D.: Automated robot-assisted surgical skill evaluation: predictive analytics approach. Int. J. Med. Robot. Comput. Assist. Surg. 14(1), e1850 (2018)

    Google Scholar 

  9. Gao, J., et al.: An asymmetric modeling for action assessment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 222–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_14

    Chapter  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  11. Jain, H., Harit, G., Sharma, A.: Action quality assessment using Siamese network-based deep metric learning. IEEE Trans. Circuits Syst. Video Technol. 31(6), 2260–2273 (2020)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017)

    Google Scholar 

  14. Lei, Q., Du, J.X., Zhang, H.B., Ye, S., Chen, D.S.: A survey of vision-based human action evaluation methods. Sensors 19(19), 4129 (2019)

    Article  Google Scholar 

  15. Liu, D., et al.: Towards unified surgical skill assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9522–9531 (2021)

    Google Scholar 

  16. Malpani, A., Vedula, S.S., Chen, C.C.G., Hager, G.D.: Pairwise comparison-based objective score for automated skill assessment of segments in a surgical task. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 138–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07521-1_15

    Chapter  Google Scholar 

  17. Nagai, T., Takeda, S., Matsumura, M., Shimizu, S., Yamamoto, S.: Action quality assessment with ignoring scene context. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 1189–1193. IEEE (2021)

    Google Scholar 

  18. Nekoui, M., Cruz, F.O.T., Cheng, L.: Eagle-eye: extreme-pose action grader using detail bird’s-eye view. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 394–402 (2021)

    Google Scholar 

  19. Nekoui, M., Tito Cruz, F.O., Cheng, L.: Falcons: fast learner-grader for contorted poses in sports. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3941–3949 (2020). https://doi.org/10.1109/CVPRW50498.2020.00458

  20. Pan, J., Gao, J., Zheng, W.: Adaptive action assessment. IEEE Trans. Pattern Anal. Mach. Intell. (01), 1 (5555). https://doi.org/10.1109/TPAMI.2021.3126534

  21. Pan, J.H., Gao, J., Zheng, W.S.: Action assessment by joint relation graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6331–6340 (2019)

    Google Scholar 

  22. Parmar, P., Morris, B.: Action quality assessment across multiple actions. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1468–1476. IEEE (2019)

    Google Scholar 

  23. Parmar, P., Morris, B.: Hallucineting spatiotemporal representations using a 2D-CNN. Signals 2, 604–618 (2021). https://doi.org/10.3390/signals2030037

  24. Parmar, P., Morris, B.T.: What and how well you performed? A multitask learning approach to action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 304–313 (2019)

    Google Scholar 

  25. Parmar, P., Reddy, J., Morris, B.: Piano skills assessment. arXiv preprint arXiv:2101.04884 (2021)

  26. Parmar, P., Tran Morris, B.: Learning to score olympic events. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2017)

    Google Scholar 

  27. Pirsiavash, H., Vondrick, C., Torralba, A.: Assessing the quality of actions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 556–571. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_36

    Chapter  Google Scholar 

  28. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)

    Google Scholar 

  29. Reiley, C.E., Hager, G.D.: Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 435–442. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_54

    Chapter  Google Scholar 

  30. Roditakis, K., Makris, A., Argyros, A.: Towards improved and interpretable action quality assessment with self-supervised alignment. In: The 14th PErvasive Technologies Related to Assistive Environments Conference. PETRA 2021, pp. 507–513. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3453892.3461624

  31. Sardari, F., Paiement, A., Hannuna, S., Mirmehdi, M.: VI-net-view-invariant quality of human movement assessment. Sensors 20(18), 5258 (2020)

    Article  Google Scholar 

  32. Tang, Y., et al.: Uncertainty-aware score distribution learning for action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9839–9848 (2020)

    Google Scholar 

  33. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  34. Varadarajan, B., Reiley, C., Lin, H., Khudanpur, S., Hager, G.: Data-derived models for segmentation with application to surgical assessment and training. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 426–434. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_53

    Chapter  Google Scholar 

  35. Wang, J., Du, Z., Li, A., Wang, Y.: Assessing action quality via attentive spatio-temporal convolutional networks. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12306, pp. 3–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60639-8_1

    Chapter  Google Scholar 

  36. Wang, T., Wang, Y., Li, M.: Towards accurate and interpretable surgical skill assessment: a video-based method incorporating recognized surgical gestures and skill levels. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 668–678. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_64

    Chapter  Google Scholar 

  37. Xiang, X., Tian, Y., Reiter, A., Hager, G.D., Tran, T.D.: S3D: stacking segmental P3D for action quality assessment. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 928–932. IEEE (2018)

    Google Scholar 

  38. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  39. Yu, X., Rao, Y., Zhao, W., Lu, J., Zhou, J.: Group-aware contrastive regression for action quality assessment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7919–7928 (2021)

    Google Scholar 

  40. Zeng, L.A., et al.: Hybrid dynamic-static context-aware attention network for action assessment in long videos. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2526–2534 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 61871196, 62001176); Natural Science Foundation of Fujian Province of China (No. 2019J01082, 2020J01085, 2022J01317); Scientific Research Funds of Huaqiao University (No. 21BS122) and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-YX601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Zhang, HB., Lei, Q., Fan, Z., Liu, J., Du, JX. (2022). Pairwise Contrastive Learning Network for Action Quality Assessment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy