Abstract
Human-Object Interaction (HOI) recognition in videos is important for analyzing human activity. Most existing work focusing on visual features usually suffer from occlusion in the real-world scenarios. Such a problem will be further complicated when multiple people and objects are involved in HOIs. Consider that geometric features such as human pose and object position provide meaningful information to understand HOIs, we argue to combine the benefits of both visual and geometric features in HOI recognition, and propose a novel Two-level Geometric feature-informed Graph Convolutional Network (\(\text {2G-GCN}\)). The geometric-level graph models the interdependency between geometric features of humans and objects, while the fusion-level graph further fuses them with visual features of humans and objects. To demonstrate the novelty and effectiveness of our method in challenging scenarios, we propose a new multi-person HOI dataset (\(\text {MPHOI-72}\)). Extensive experiments on \(\text {MPHOI-72}\) (multi-person HOI), CAD-120 (single-human HOI) and Bimanual Actions (two-hand HOI) datasets demonstrate our superior performance compared to state-of-the-arts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Quickstart: Set up azure kinect body tracking (2022). https://docs.microsoft.com/en-us/azure/kinect-dk/body-sdk-setup
Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077–6086 (2018)
Bodla, N., Shrivastava, G., Chellappa, R., Shrivastava, A.: Hierarchical video prediction using relational layouts for human-object interactions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12146–12155 (2021)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. arXiv e-prints pp. arXiv-1812 (2018)
Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 381–389. IEEE (2018)
Dabral, R., Sarkar, S., Reddy, S.P., Ramakrishnan, G.: Exploration of spatial and temporal modeling alternatives for HOI. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2281–2290 (2021)
Damen, D., et al.: Rescaling egocentric vision: collection, pipeline and challenges for epic-kitchens-100. Int. J. Comput. Vision (IJCV) (2021). https://doi.org/10.1007/s11263-021-01531-2
Das, S., Sharma, S., Dai, R., Brémond, F., Thonnat, M.: VPN: learning video-pose embedding for activities of daily living. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 72–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_5
Dreher, C.R., Wächter, M., Asfour, T.: Learning object-action relations from bimanual human demonstration using graph networks. IEEE Robot. Autom. Lett. 5(1), 187–194 (2020)
Fang, H.-S., Cao, J., Tai, Y.-W., Lu, C.: Pairwise body-part attention for recognizing human-object interactions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 52–68. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_4
Farha, Y.A., Gall, J.: MS-TCN: multi-stage temporal convolutional network for action segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3575–3584 (2019)
Fouhey, D.F., Kuo, W.C., Efros, A.A., Malik, J.: From lifestyle vlogs to everyday interactions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4991–5000 (2018)
Gao, C., Zou, Y., Huang, J.B.: iCan: instance-centric attention network for human-object interaction detection. arXiv preprint arXiv:1808.10437 (2018)
Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8359–8367 (2018)
Gkioxari, G., Girshick, R., Malik, J.: Actions and attributes from wholes and parts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2470–2478 (2015)
Guo, Z., Liu, C., Zhang, X., Jiao, J., Ji, X., Ye, Q.: Beyond bounding-box: convex-hull feature adaptation for oriented and densely packed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8792–8801, June 2021
Gupta, A., Kembhavi, A., Davis, L.S.: Observing human-object interactions: using spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1775–1789 (2009)
Gupta, S., Malik, J.: Visual semantic role labeling. arXiv preprint arXiv:1505.04474 (2015)
Han, J., Ding, J., Xue, N., Xia, G.S.: ReDet: a rotation-equivariant detector for aerial object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2786–2795, June 2021
Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5308–5317 (2016)
Kato, K., Li, Y., Gupta, A.: Compositional learning for human object interaction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 247–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_15
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 14–29 (2016)
Koppula, H.S., Gupta, R., Saxena, A.: Learning human activities and object affordances from RGB-D videos. Int. J. Robot. Res. 32(8), 951–970 (2013)
Krebs, F., Meixner, A., Patzer, I., Asfour, T.: The kit bimanual manipulation dataset. In: IEEE/RAS International Conference on Humanoid Robots (Humanoids) (2021)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017)
Le, H., Sahoo, D., Chen, N.F., Hoi, S.C.: BIST: bi-directional spatio-temporal reasoning for video-grounded dialogues. arXiv preprint arXiv:2010.10095 (2020)
Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017)
Li, Y., Nevatia, R.: Key object driven multi-category object recognition, localization and tracking using spatio-temporal context. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 409–422. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_30
Liang, Z., Liu, J., Guan, Y., Rojas, J.: Pose-based modular network for human-object interaction detection. arXiv preprint arXiv:2008.02042 (2020)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)
Mallya, A., Lazebnik, S.: Learning models for actions and person-object interactions with transfer to question answering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 414–428. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_25
Maraghi, V.O., Faez, K.: Zero-shot learning on human-object interaction recognition in video. In: 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–7. IEEE (2019)
Materzynska, J., Xiao, T., Herzig, R., Xu, H., Wang, X., Darrell, T.: Something-else: compositional action recognition with spatial-temporal interaction networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1049–1059 (2020)
Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14424–14432 (2020)
Morais, R., Le, V., Venkatesh, S., Tran, T.: Learning asynchronous and sparse human-object interaction in videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16041–16050 (2021)
Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.-C.: Learning human-object interactions by graph parsing neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 407–423. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_25
Qiu, L., et al.: Peeking into occluded joints: a novel framework for crowd pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 488–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_29
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)
Saito, S., Simon, T., Saragih, J., Joo, H.: PifuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Sener, O., Saxena, A.: RCRF: recursive belief estimation over CRFs in RGB-D activity videos. In: Robotics: Science and Systems. Citeseer (2015)
Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)
Shi, L., et al.: SGCN: sparse graph convolution network for pedestrian trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8994–9003 (2021)
Shu, T., Gao, X., Ryoo, M.S., Zhu, S.C.: Learning social affordance grammar from videos: transferring human interactions to human-robot interactions. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1669–1676. IEEE (2017)
Shu, T., Ryoo, M.S., Zhu, S.C.: Learning social affordance for human-robot interaction. arXiv preprint arXiv:1604.03692 (2016)
Shum, H.P., Ho, E.S., Jiang, Y., Takagi, S.: Real-time posture reconstruction for microsoft kinect. IEEE Trans. Cybern. 43(5), 1357–1369 (2013)
Ulutan, O., Iftekhar, A.S.M., Manjunath, B.S.: VSGNET: spatial attention network for detecting human object interactions using graph convolutions. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13617–13626 (2020)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wan, B., Zhou, D., Liu, Y., Li, R., He, X.: Pose-aware multi-level feature network for human object interaction detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9469–9478 (2019)
Wang, H., Zheng, W., Yingbiao, L.: Contextual heterogeneous graph network for human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 248–264. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_15
Wang, H., Ho, E.S.L., Shum, H.P.H., Zhu, Z.: Spatio-temporal manifold learning for human motions via long-horizon modeling. IEEE Trans. Vis. Comput. Graph. 27(1), 216–227 (2021). https://doi.org/10.1109/TVCG.2019.2936810
Wang, N., Zhu, G., Zhang, L., Shen, P., Li, H., Hua, C.: Spatio-temporal interaction graph parsing networks for human-object interaction recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4985–4993 (2021)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Xiu, Y., Li, J., Wang, H., Fang, Y., Lu, C.: Pose flow: efficient online pose tracking. arXiv preprint arXiv:1802.00977 (2018)
Xu, B., Wong, Y., Li, J., Zhao, Q., Kankanhalli, M.S.: Learning to detect human-object interactions with knowledge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., Zheng, N.: Semantics-guided neural networks for efficient skeleton-based human action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1112–1121 (2020)
Zheng, S., Chen, S., Jin, Q.: Skeleton-based interactive graph network for human object interaction detection. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)
Zhu, M., Ho, E.S.L., Shum, H.P.H.: A skeleton-aware graph convolutional network for human-object interaction detection. In: Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics. SMC 2022 (2022)
Zhuang, B., Wu, Q., Shen, C., Reid, I., van den Hengel, A.: Care about you: towards large-scale human-centric visual relationship detection. arXiv preprint arXiv:1705.09892 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qiao, T., Men, Q., Li, F.W.B., Kubotani, Y., Morishima, S., Shum, H.P.H. (2022). Geometric Features Informed Multi-person Human-Object Interaction Recognition in Videos. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-19772-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19771-0
Online ISBN: 978-3-031-19772-7
eBook Packages: Computer ScienceComputer Science (R0)