Abstract
We make the distinction between (i) style transfer, in which a source image is manipulated to match the textures and colors of a target image, and (ii) essence transfer, in which one edits the source image to include high-level semantic attributes from the target. Crucially, the semantic attributes that constitute the essence of an image may differ from image to image. Our blending operator combines the powerful StyleGAN generator and the semantic encoder of CLIP in a novel way that is simultaneously additive in both latent spaces, resulting in a mechanism that guarantees both identity preservation and high-level feature transfer without relying on a facial recognition network. We present two variants of our method. The first is based on optimization, while the second fine-tunes an existing inversion encoder to perform essence extraction. Through extensive experiments, we demonstrate the superiority of our methods for essence transfer over existing methods for style transfer, domain adaptation, and text-based semantic editing. Our code is available at: https://github.com/hila-chefer/TargetCLIP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4431–4440 (2019)
Abdal, R., Zhu, P., Femiani, J.C., Mitra, N.J., Wonka, P.: Clip2StyleGAN: unsupervised extraction of StyleGAN edit directions. ArXiv abs/2112.05219 (2021)
Alaluf, Y., Patashnik, O., Cohen-Or, D.: ReStyle: a residual-based StyleGAN encoder via iterative refinement. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6691–6700 (2021)
Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM Trans. Graph. (TOG) 38, 1–11 (2019)
Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 95–104 (2017)
Chong, M.J., Forsyth, D.: JoJoGAN: one shot face stylization. ArXiv 2112.11641 (2021)
Collins, E., Bala, R., Price, B., Susstrunk, S.: Editing in style: uncovering the local semantics of GANs. In: CVPR, pp. 5771–5780 (2020)
Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial network. IEEE Trans. Neural Netw. Learn. Syst. 30, 1967–1974 (2019)
Deng, J., Guo, J., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4685–4694 (2019)
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, vol. 2, pp. 1033–1038 (1999).https://doi.org/10.1109/ICCV.1999.790383
Gal, R., Patashnik, O., Maron, H., Chechik, G., Cohen-Or, D.: StyleGAN-NADA: clip-guided domain adaptation of image generators (2021)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Gu, J., Shen, Y., Zhou, B.: Image processing using multi-code GAN prior. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3009–3018 (2020)
Guan, S., Tai, Y., Ni, B., Zhu, F., Huang, F., Yang, X.: Collaborative learning for faster StyleGAN embedding. ArXiv abs/2007.01758 (2020)
Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: Ganspace: discovering interpretable gan controls. arXiv preprint arXiv:2004.02546 (2020)
Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/383259.383295
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 6629–6640. Curran Associates Inc., Red Hook (2017)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 1510–1519 (2017). https://doi.org/10.1109/ICCV.2017.167
Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1510–1519 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kang, K., Kim, S., Cho, S.: GAN inversion for out-of-range images with geometric transformations. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13921–13929 (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4396–4405 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR, pp. 8110–8119 (2020)
Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent in GAN for real-time image editing. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 852–861 (2021)
Kim, S.S.Y., Kolkin, N., Salavon, J., Shakhnarovich, G.: Deformable style transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 246–261. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_15
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)
Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation (2022)
Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 385–395. Curran Associates Inc., Red Hook (2017)
Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adversarial networks. ArXiv abs/1702.04782 (2017)
Liu, M., Li, Q., Qin, Z., Zhang, G., Wan, P., Zheng, W.: BlendGAN: implicitly GAN blending for arbitrary stylized face generation. In: Advances in Neural Information Processing Systems (2021)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015
Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 6997–7005 (2017). https://doi.org/10.1109/CVPR.2017.740
Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep painterly harmonization. Comput. Graph. Forum 37(4), 95–106 (2018). https://doi.org/10.1111/cgf.13478
Luo, J., Xu, Y., Tang, C., Lv, J.: Learning inverse mapping by autoencoder based generative adversarial nets. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing. ICONIP 2017. LNCS, vol. 10635, pp. 207–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_22
Ojha, U., et al.: Few-shot image generation via cross-domain correspondence. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10738–10747 (2021)
Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: StyleClip: text-driven manipulation of StyleGAN imagery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2085–2094 (2021)
Perarnau, G., van de Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. ArXiv abs/1611.06355 (2016)
Pidhorskyi, S., Adjeroh, D.A., Doretto, G.: Adversarial latent autoencoders. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14092–14101 (2020)
Radford, A., Kim, J.W., Hallacy, C., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Richardson, E., et al.: Encoding in style: a StyleGAN encoder for image-to-image translation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021
Roich, D., Mokady, R., Bermano, A.H., Cohen-Or, D.: Pivotal tuning for latent-based editing of real images. arXiv preprint arXiv:2106.05744 (2021)
Seitzer, M.: PyTorch-FID: FID Score for PyTorch, August 2020. github.com/mseitzer/pytorch-fid. Version 0.2.1
Shen, Y., Zhou, B.: Closed-form factorization of latent semantics in GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1532–1540 (2021)
Sunkavalli, K., Johnson, M.K., Matusik, W., Pfister, H.: Multi-scale image harmonization. ACM Trans. Graph. 29(4) (2010). https://doi.org/10.1145/1778765.1778862
Tewari, A., et al.: StyleRig: rigging StyleGAN for 3d control over portrait images. In: CVPR (2020)
Tewel, Y., Shalev, Y., Schwartz, I., Wolf, L.: Zero-shot image-to-text generation for visual-semantic arithmetic. In: CVPR (2021)
Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or, D.: Designing an encoder for stylegan image manipulation. arXiv preprint arXiv:2102.02766 (2021)
Ullman, S.: High-Level Vision: Object Recognition and Visual Cognition. MIT Press, Cambridge (2000)
Voynov, A., Babenko, A.: Unsupervised discovery of interpretable directions in the GAN latent space. In: International Conference on Machine Learning, pp. 9786–9796. PMLR (2020)
Wang, T., Zhang, Y., Fan, Y., Wang, J., Chen, Q.: High-fidelity GAN inversion for image attribute editing. ArXiv abs/2109.06590 (2021)
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36
Zhu, P., Abdal, R., Femiani, J.C., Wonka, P.: Mind the gap: domain gap control for single shot domain adaptation for generative adversarial networks. ArXiv:2110.08398 (2021)
Zhu, P., Abdal, R., Qin, Y., Wonka, P.: Improved StyleGAN embedding: where are the good latents? ArXiv abs/2012.09036 (2020)
Acknowledgment
This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant ERC CoG 725974).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chefer, H., Benaim, S., Paiss, R., Wolf, L. (2022). Image-Based CLIP-Guided Essence Transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-19778-9_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19777-2
Online ISBN: 978-3-031-19778-9
eBook Packages: Computer ScienceComputer Science (R0)