Skip to main content

Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13677))

Included in the following conference series:

Abstract

Videos are created to express emotion, exchange information, and share experiences. Video synthesis has intrigued researchers for a long time. Despite the rapid progress driven by advances in visual synthesis, most existing studies focus on improving the frames’ quality and the transitions between them, while little progress has been made in generating longer videos. In this paper, we present a method that builds on 3D-VQGAN and transformers to generate videos with thousands of frames. Our evaluation shows that our model trained on 16-frame video clips from standard benchmarks such as UCF-101, Sky Time-lapse, and Taichi-HD datasets can generate diverse, coherent, and high-quality long videos. We also showcase conditional extensions of our approach for generating meaningful long videos by incorporating temporal information with text and audio. Videos and code can be found at https://songweige.github.io/projects/tats.

S. Ge—Work done primarily during an internship at Meta AI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Training DVD-GAN [9] or DVD-GAN-FP [26] on 16-frame videos requires 32–512 TPU replicas and 12–96 h.

  2. 2.

    The large spatial span in image synthesis [10] disguises the issue. When applying sliding window to border tokens, the problem resurfaces in supp. mat. Figure 12.

References

  1. Acharya, D., Huang, Z., Paudel, D.P., Van Gool, L.: Towards high resolution video generation with progressive growing of sliced Wasserstein GANs. arXiv preprint arXiv:1810.02419 (2018)

  2. Alsallakh, B., Kokhlikyan, N., Miglani, V., Yuan, J., Reblitz-Richardson, O.: Mind the pad - CNNs can develop blind spots. In: ICLR (2021)

    Google Scholar 

  3. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2018)

    Google Scholar 

  4. Brooks, T., et al.: Generating long videos of dynamic scenes. arXiv preprint arXiv:2206.03429 (2022)

  5. Brown, T., et al.: Language models are few-shot learners. In: NeurIPS (2020)

    Google Scholar 

  6. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  7. Castrejon, L., Ballas, N., Courville, A.: Hierarchical video generation for complex data. arXiv preprint arXiv:2106.02719 (2021)

  8. Chatterjee, M., Cherian, A.: Sound2Sight: generating visual dynamics from sound and context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 701–719. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_42

    Chapter  Google Scholar 

  9. Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex datasets. arXiv preprint arXiv:1907.06571 (2019)

  10. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR (2021)

    Google Scholar 

  11. Fan, A., Lewis, M., Dauphin, Y.: Hierarchical neural story generation (2018)

    Google Scholar 

  12. Gemmeke, J.F., et al.: Audio set: an ontology and human-labeled dataset for audio events. In: ICASSP (2017)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  14. Hayes, T., et al.: MUGEN: a playground for video-audio-text multimodal understanding and generation. arXiv preprint arXiv:2204.08058 (2022)

  15. Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video diffusion models. arXiv preprint arXiv:2204.03458 (2022)

  16. Hong, W., Ding, M., Zheng, W., Liu, X., Tang, J.: CogVideo: large-scale pretraining for text-to-video generation via transformers. arXiv preprint arXiv:2205.15868 (2022)

  17. Islam, M.A., Jia, S., Bruce, N.D.: How much position information do convolutional neural networks encode? In: ICLR (2019)

    Google Scholar 

  18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  19. Kahembwe, E., Ramamoorthy, S.: Lower dimensional kernels for video discriminators. Neural Netw. 132, 506–520 (2020)

    Article  Google Scholar 

  20. Kalchbrenner, N., et al.: Video pixel networks. In: ICML (2017)

    Google Scholar 

  21. Karras, T., et al.: Alias-free generative adversarial networks. In: NeurIPS (2021)

    Google Scholar 

  22. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  23. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR (2020)

    Google Scholar 

  24. Kayhan, O.S., van Gemert, J.C.: On translation invariance in CNNs: convolutional layers can exploit absolute spatial location. In: CVPR (2020)

    Google Scholar 

  25. Le Moing, G., Ponce, J., Schmid, C.: CCVS: context-aware controllable video synthesis. In: NeurIPS (2021)

    Google Scholar 

  26. Luc, P., et al.: Transformation-based adversarial video prediction on large-scale data. arXiv preprint arXiv:2003.04035 (2020)

  27. Munoz, A., Zolfaghari, M., Argus, M., Brox, T.: Temporal shift GAN for large scale video generation. In: WACV (2021)

    Google Scholar 

  28. Nash, C., et al.: Transframer: arbitrary frame prediction with generative models. arXiv preprint arXiv:2203.09494 (2022)

  29. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NeurIPS (2017)

    Google Scholar 

  30. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  31. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  32. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  33. Rakhimov, R., Volkhonskiy, D., Artemov, A., Zorin, D., Burnaev, E.: Latent video transformer. arXiv preprint arXiv:2006.10704 (2020)

  34. Ramesh, A., et al.: Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092 (2021)

  35. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604 (2014)

  36. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value clipping. In: ICCV (2017)

    Google Scholar 

  37. Saito, M., Saito, S., Koyama, M., Kobayashi, S.: Train sparsely, generate densely: memory-efficient unsupervised training of high-resolution temporal GAN. Int. J. Comput. Vis. 128(10), 2586–2606 (2020). https://doi.org/10.1007/s11263-020-01333-y

    Article  Google Scholar 

  38. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: NeurIPS (2019)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  40. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: NeurIPS (2020)

    Google Scholar 

  41. Skorokhodov, I., Tulyakov, S., Elhoseiny, M.: StyleGAN-V: a continuous video generator with the price, image quality and perks of StyleGAN2. arXiv preprint arXiv:2112.14683 (2021)

  42. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  43. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML (2015)

    Google Scholar 

  44. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020)

    Google Scholar 

  45. Tian, Y., et al.: A good image generator is what you need for high-resolution video synthesis. In: ICLR (2021)

    Google Scholar 

  46. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)

    Google Scholar 

  47. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: CVPR (2018)

    Google Scholar 

  48. Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R., Michalski, M., Gelly, S.: Towards accurate generative models of video: a new metric & challenges. In: ICLR (2019)

    Google Scholar 

  49. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: NeurIPS (2016)

    Google Scholar 

  50. Wang, T.C., et al.: Video-to-video synthesis. In: NeurIPS (2018)

    Google Scholar 

  51. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)

    Google Scholar 

  52. Weissenborn, D., Täckström, O., Uszkoreit, J.: Scaling autoregressive video models. In: ICLR (2020)

    Google Scholar 

  53. Wu, C., et al.: GODIVA: generating open-domain videos from natural descriptions. arXiv preprint arXiv:2104.14806 (2021)

  54. Wu, C., et al.: NÜWA: visual synthesis pre-training for neural visual world creation. arXiv preprint arXiv:2111.12417 (2021)

  55. Xiong, W., Luo, W., Ma, L., Liu, W., Luo, J.: Learning to generate time-lapse videos using multi-stage dynamic generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  56. Xu, R., Wang, X., Chen, K., Zhou, B., Loy, C.C.: Positional encoding as spatial inductive bias in GANs. In: CVPR (2021)

    Google Scholar 

  57. Yan, W., Zhang, Y., Abbeel, P., Srinivas, A.: VideoGPT: cideo generation using VQ-VAE and transformers. arXiv preprint arXiv:2104.10157 (2021)

  58. Yu, S., et al.: Generating videos with dynamics-aware implicit generative adversarial networks. In: ICLR (2021)

    Google Scholar 

  59. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgements

We thank Oran Gafni, Sasha Sheng, and Isabelle Hu for helpful discussion and feedback; Patrick Esser and Robin Rombach for sharing additional insights for training VQGAN models; Anoop Cherian and Moitreya Chatterjee for sharing the pre-processing code for the AudioSet dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songwei Ge .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12033 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, S. et al. (2022). Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy