Skip to main content

Point MixSwap: Attentional Point Cloud Mixing via Swapping Matched Structural Divisions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Data augmentation is developed for increasing the amount and diversity of training data to enhance model learning. Compared to 2D images, point clouds, with the 3D geometric nature as well as the high collection and annotation costs, pose great challenges and potentials for augmentation. This paper presents a 3D augmentation method that explores the structural variance across multiple point clouds, and generates more diverse point clouds to enrich the training set. Specifically, we propose an attention module that decomposes a point cloud into several disjoint point subsets, called divisions, in a way where each division has a corresponding division in another point cloud. The augmented point clouds are synthesized by swapping matched divisions. They exhibit high diversity since both intra- and inter-cloud variations are explored, hence useful for downstream tasks. The proposed method for augmentation can act as a module and be integrated into a point-based network. The resultant framework is end-to-end trainable. The experiments show that it achieves state-of-the-art performance on the ModelNet40 and ModelNet10 benchmarks. The code for this work is publicly available (The source code is available at: https://github.com/ardianumam/PointMixSwap).

A. Umam and C.-K. Yang—The authors have equal contribution to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Chen, N., et al.: Unsupervised learning of intrinsic structural representation points. In: CVPR (2020)

    Google Scholar 

  3. Chen, Y., et al.: PointMixup: augmentation for point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 330–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_20

    Chapter  Google Scholar 

  4. Choi, J., Song, Y., Kwak, N.: Part-aware data augmentation for 3D object detection in point cloud (2021)

    Google Scholar 

  5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: CVPR (2019)

    Google Scholar 

  6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.: Randaugment: practical automated data augmentation with a reduced search space. In: NIPS

    Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  8. Kim, J.H., Choo, W., Song, H.O.: Puzzle mix: exploiting saliency and local statistics for optimal mixup. In: ICLR (2020)

    Google Scholar 

  9. Kim, S., Lee, S., Hwang, D., Lee, J., Hwang, S.J., Kim, H.J.: Point cloud augmentation with weighted local transformations. In: ICCV (2021)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks

    Google Scholar 

  11. Lee, D., et al.: Regularization strategy for point cloud via rigidly mixed sample. In: CVPR (2021)

    Google Scholar 

  12. Li, R., Li, X., Heng, P.A., Fu, C.W.: Pointaugment: an auto-augmentation framework for point cloud classification. In: CVPR (2020)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  14. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detection in point clouds. In: ICCV (2019)

    Google Scholar 

  15. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  16. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. NIPS (2017)

    Google Scholar 

  17. Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: CVPR (2020)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Sixt, L., Wild, B., Landgraf, T.: RenderGAN: generating realistic labeled data. Frontiers in Robotics and AI (2018)

    Google Scholar 

  20. Szegedy, C., et al.: Going deeper with convolutions. In: ICCV (2015)

    Google Scholar 

  21. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, D.T., Yeung, S.K.: Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data. In: ICCV (2019)

    Google Scholar 

  22. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, T., Yeung, S.K.: Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 1588–1597 (2019)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  24. Verma, V., et al.: Manifold Mixup: better representations by interpolating hidden states. In: ICML (2019)

    Google Scholar 

  25. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. TOG (2019)

    Google Scholar 

  26. Wu, Z., et al.: 3D shapeNets: a deep representation for volumetric shapes. In: CVPR (2015)

    Google Scholar 

  27. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: learning curves for point clouds shape analysis. In: ICCV (2021)

    Google Scholar 

  28. Yang, C.K., Chuang, Y.Y., Lin, Y.Y.: Unsupervised point cloud object co-segmentation by co-contrastive learning and mutual attention sampling. In: ICCV (2021)

    Google Scholar 

  29. Yang, C.K., Wu, J.J., Chen, K.S., Chuang, Y.Y., Lin, Y.Y.: An mil-derived transformer for weakly supervised point cloud segmentation. In: CVPR (2022)

    Google Scholar 

  30. Yoo, J., Ahn, N., Sohn, K.A.: Rethinking data augmentation for image super-resolution: a comprehensive analysis and a new strategy. In: CVPR (2020)

    Google Scholar 

  31. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  32. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. ICLR (2018)

    Google Scholar 

  33. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV (2021)

    Google Scholar 

  34. Zhu, C., Xu, K., Chaudhuri, S., Yi, L., Guibas, L.J., Zhang, H.: AdaCoSeg: adaptive shape co-segmentation with group consistency loss. In: CVPR (2020)

    Google Scholar 

  35. Zhu, X., Liu, Y., Li, J., Wan, T., Qin, Z.: Emotion classification with data augmentation using generative adversarial networks. In: KDD (2018)

    Google Scholar 

  36. Zhu, Y., Aoun, M., Krijn, M., Vanschoren, J., Campus, H.T.: Data augmentation using conditional generative adversarial networks for leaf counting in arabidopsis plants. In: BMVC (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ministry of Science and Technology (MOST) under grants 109–2221-E-009–113-MY3, 111–2628-E-A49-025-MY3, 111–2634-F-007–002, 110–2634-F-002–050, 110–2634-F-002–051, 110–2634-F-006–022 and 110–2634-F-A49-006. This work was funded in part by Qualcomm through a Taiwan University Research Collaboration Project and by MediaTek. We thank the National Center for High-performance Computing (NCHC) of National Applied Research Laboratories (NARLabs) in Taiwan for providing computational and storage resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardian Umam .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 10107 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Umam, A., Yang, CK., Chuang, YY., Chuang, JH., Lin, YY. (2022). Point MixSwap: Attentional Point Cloud Mixing via Swapping Matched Structural Divisions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy